រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

6x^{2}+x-2\leq 0
គុណវិសមភាពនឹង -1 ដើម្បីបង្កើត​មេគុណនៃស្វ័យគុណខ្ពស់បំផុត​នៅក្នុងចំនួនវិជ្ជមាន -6x^{2}-x+2។ ចាប់តាំងពី -1 គឺអវិជ្ជមានទិសដៅវិសមភាពត្រូវបានផ្លាស់ប្តូរ។
6x^{2}+x-2=0
ដើម្បីដោះស្រាយវិសមភាព ត្រូវដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តា។ ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-2\right)}}{2\times 6}
គ្រប់សមីការរ​ដែល​មានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយ​ដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 6 សម្រាប់ a, 1 សម្រាប់ b និង -2 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{-1±7}{12}
ធ្វើការគណនា។
x=\frac{1}{2} x=-\frac{2}{3}
ដោះស្រាយសមីការ x=\frac{-1±7}{12} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
6\left(x-\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\leq 0
សរសេរវិសមភាពឡើងវិញដោយប្រើ​ចម្លើយដែលទទួលបាន។
x-\frac{1}{2}\geq 0 x+\frac{2}{3}\leq 0
សម្រាប់ផលគុណជា ≤0 តម្លៃនៃផលគុណ​មួយគឺជា x-\frac{1}{2} និង x+\frac{2}{3} ត្រូវតែជា ≥0 និងផលគុណ​មួយ​ផ្សេងទៀតត្រូវតែជា ≤0។ ពិចារណាករណីនៅពេល x-\frac{1}{2}\geq 0 និង x+\frac{2}{3}\leq 0។
x\in \emptyset
នេះគឺជាមិនពិត​សម្រាប់ x ណាមួយ។
x+\frac{2}{3}\geq 0 x-\frac{1}{2}\leq 0
ពិចារណាករណីនៅពេល x-\frac{1}{2}\leq 0 និង x+\frac{2}{3}\geq 0។
x\in \begin{bmatrix}-\frac{2}{3},\frac{1}{2}\end{bmatrix}
ចម្លើយដែលផ្ទៀងផ្ទាត់​វិសមភាពទាំងពីរគឺ x\in \left[-\frac{2}{3},\frac{1}{2}\right]។
x\in \begin{bmatrix}-\frac{2}{3},\frac{1}{2}\end{bmatrix}
ចម្លើយចុងក្រោយ គឺជាប្រជុំនៃចម្លើយដែលទទួលបាន។