ដោះស្រាយសម្រាប់ x
x\in \mathrm{R}
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3x^{2}-5x+4>0
គុណវិសមភាពនឹង -1 ដើម្បីបង្កើតមេគុណនៃស្វ័យគុណខ្ពស់បំផុតនៅក្នុងចំនួនវិជ្ជមាន -3x^{2}+5x-4។ ចាប់តាំងពី -1 គឺអវិជ្ជមានទិសដៅវិសមភាពត្រូវបានផ្លាស់ប្តូរ។
3x^{2}-5x+4=0
ដើម្បីដោះស្រាយវិសមភាព ត្រូវដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តា។ ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\times 4}}{2\times 3}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 3 សម្រាប់ a, -5 សម្រាប់ b និង 4 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{5±\sqrt{-23}}{6}
ធ្វើការគណនា។
3\times 0^{2}-5\times 0+4=4
មិនមានចម្លើយទេ ដោយសារតែឬសការេនៃចំនួនអវិជ្ជមានមិនត្រូវបានកំណត់នៅក្នុងកាយពិត។ កន្សោម 3x^{2}-5x+4 មានសញ្ញាដូចគ្នាសម្រាប់ x ណាមួយ។ ដើម្បីកំណត់សញ្ញា ត្រូវគណនាតម្លៃនៃកន្សោមសម្រាប់ x=0។
x\in \mathrm{R}
តម្លៃនៃកន្សោម 3x^{2}-5x+4 ជាចំនួនវិជ្ជមានជានិច្ច។ វិសមភាពកើតឡើងសម្រាប់ x\in \mathrm{R}។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}