ដោះស្រាយសម្រាប់ x
x=-\frac{1}{2}=-0.5
x=3
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ -1,0 ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x\left(x+1\right) ផលគុណរួមតូចបំផុតនៃ x+1,x។
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
ប្រើលក្ខណៈបំបែកដើម្បីគុណ x+1 នឹង 3។
-x\times 4-3x-3=-2x\left(x+1\right)
ដើម្បីរកមើលពាក្យផ្ទុយនៃ 3x+3 សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
-x\times 4-3x-3=-2x^{2}-2x
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -2x នឹង x+1។
-x\times 4-3x-3+2x^{2}=-2x
បន្ថែម 2x^{2} ទៅជ្រុងទាំងពីរ។
-x\times 4-3x-3+2x^{2}+2x=0
បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
-x\times 4-x-3+2x^{2}=0
បន្សំ -3x និង 2x ដើម្បីបាន -x។
-4x-x-3+2x^{2}=0
គុណ -1 និង 4 ដើម្បីបាន -4។
-5x-3+2x^{2}=0
បន្សំ -4x និង -x ដើម្បីបាន -5x។
2x^{2}-5x-3=0
តម្រៀបពហុធារសារឡើងវិញដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
a+b=-5 ab=2\left(-3\right)=-6
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx-3។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-6 2,-3
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -6។
1-6=-5 2-3=-1
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-6 b=1
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -5 ។
\left(2x^{2}-6x\right)+\left(x-3\right)
សរសេរ 2x^{2}-5x-3 ឡើងវិញជា \left(2x^{2}-6x\right)+\left(x-3\right)។
2x\left(x-3\right)+x-3
ដាក់ជាកត្តា 2x នៅក្នុង 2x^{2}-6x។
\left(x-3\right)\left(2x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-3 ដោយប្រើលក្ខណៈបំបែក។
x=3 x=-\frac{1}{2}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-3=0 និង 2x+1=0។
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ -1,0 ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x\left(x+1\right) ផលគុណរួមតូចបំផុតនៃ x+1,x។
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
ប្រើលក្ខណៈបំបែកដើម្បីគុណ x+1 នឹង 3។
-x\times 4-3x-3=-2x\left(x+1\right)
ដើម្បីរកមើលពាក្យផ្ទុយនៃ 3x+3 សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
-x\times 4-3x-3=-2x^{2}-2x
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -2x នឹង x+1។
-x\times 4-3x-3+2x^{2}=-2x
បន្ថែម 2x^{2} ទៅជ្រុងទាំងពីរ។
-x\times 4-3x-3+2x^{2}+2x=0
បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
-x\times 4-x-3+2x^{2}=0
បន្សំ -3x និង 2x ដើម្បីបាន -x។
-4x-x-3+2x^{2}=0
គុណ -1 និង 4 ដើម្បីបាន -4។
-5x-3+2x^{2}=0
បន្សំ -4x និង -x ដើម្បីបាន -5x។
2x^{2}-5x-3=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -5 សម្រាប់ b និង -3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
ការ៉េ -5។
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
គុណ -8 ដង -3។
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
បូក 25 ជាមួយ 24។
x=\frac{-\left(-5\right)±7}{2\times 2}
យកឬសការ៉េនៃ 49។
x=\frac{5±7}{2\times 2}
ភាពផ្ទុយគ្នានៃ -5 គឺ 5។
x=\frac{5±7}{4}
គុណ 2 ដង 2។
x=\frac{12}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{5±7}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 5 ជាមួយ 7។
x=3
ចែក 12 នឹង 4។
x=-\frac{2}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{5±7}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 7 ពី 5។
x=-\frac{1}{2}
កាត់បន្ថយប្រភាគ \frac{-2}{4} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
x=3 x=-\frac{1}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
អថេរ x មិនអាចស្មើនឹងតម្លៃណាមួយបានទេ -1,0 ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង x\left(x+1\right) ផលគុណរួមតូចបំផុតនៃ x+1,x។
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
ប្រើលក្ខណៈបំបែកដើម្បីគុណ x+1 នឹង 3។
-x\times 4-3x-3=-2x\left(x+1\right)
ដើម្បីរកមើលពាក្យផ្ទុយនៃ 3x+3 សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
-x\times 4-3x-3=-2x^{2}-2x
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -2x នឹង x+1។
-x\times 4-3x-3+2x^{2}=-2x
បន្ថែម 2x^{2} ទៅជ្រុងទាំងពីរ។
-x\times 4-3x-3+2x^{2}+2x=0
បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
-x\times 4-x-3+2x^{2}=0
បន្សំ -3x និង 2x ដើម្បីបាន -x។
-x\times 4-x+2x^{2}=3
បន្ថែម 3 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
-4x-x+2x^{2}=3
គុណ -1 និង 4 ដើម្បីបាន -4។
-5x+2x^{2}=3
បន្សំ -4x និង -x ដើម្បីបាន -5x។
2x^{2}-5x=3
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{2x^{2}-5x}{2}=\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}-\frac{5}{2}x=\frac{3}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
ចែក -\frac{5}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{5}{4}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{5}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
លើក -\frac{5}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
បូក \frac{3}{2} ជាមួយ \frac{25}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
ដាក់ជាកត្តា x^{2}-\frac{5}{2}x+\frac{25}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
ផ្ទៀងផ្ទាត់។
x=3 x=-\frac{1}{2}
បូក \frac{5}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}