រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-3x-4=-4
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x-4 នឹង x+1 ហើយបន្សំដូចតួ។
x^{2}-3x-4+4=0
បន្ថែម 4 ទៅជ្រុងទាំងពីរ។
x^{2}-3x=0
បូក -4 និង 4 ដើម្បីបាន 0។
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -3 សម្រាប់ b និង 0 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-3\right)±3}{2}
យកឬសការ៉េនៃ \left(-3\right)^{2}។
x=\frac{3±3}{2}
ភាពផ្ទុយគ្នានៃ -3 គឺ 3។
x=\frac{6}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{3±3}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 3 ជាមួយ 3។
x=3
ចែក 6 នឹង 2។
x=\frac{0}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{3±3}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 3 ពី 3។
x=0
ចែក 0 នឹង 2។
x=3 x=0
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-3x-4=-4
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x-4 នឹង x+1 ហើយបន្សំដូចតួ។
x^{2}-3x=-4+4
បន្ថែម 4 ទៅជ្រុងទាំងពីរ។
x^{2}-3x=0
បូក -4 និង 4 ដើម្បីបាន 0។
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
ចែក -3 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{3}{2}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{3}{2} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
លើក -\frac{3}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
ដាក់ជាកត្តា x^{2}-3x+\frac{9}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
ផ្ទៀងផ្ទាត់។
x=3 x=0
បូក \frac{3}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។