រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\left(2x\right)^{2}-1=12x-10
ពិនិត្យ \left(2x-1\right)\left(2x+1\right)។ ផលគុណអាចបម្លែងទៅជាផលដកនៃការេដោយប្រើវិធាន៖ \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}។ ការ៉េ 1។
2^{2}x^{2}-1=12x-10
ពន្លាត \left(2x\right)^{2}។
4x^{2}-1=12x-10
គណនាស្វ័យគុណ 2 នៃ 2 ហើយបាន 4។
4x^{2}-1-12x=-10
ដក 12x ពីជ្រុងទាំងពីរ។
4x^{2}-1-12x+10=0
បន្ថែម 10 ទៅជ្រុងទាំងពីរ។
4x^{2}+9-12x=0
បូក -1 និង 10 ដើម្បីបាន 9។
4x^{2}-12x+9=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 4 សម្រាប់ a, -12 សម្រាប់ b និង 9 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
ការ៉េ -12។
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
គុណ -4 ដង 4។
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
គុណ -16 ដង 9។
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
បូក 144 ជាមួយ -144។
x=-\frac{-12}{2\times 4}
យកឬសការ៉េនៃ 0។
x=\frac{12}{2\times 4}
ភាពផ្ទុយគ្នានៃ -12 គឺ 12។
x=\frac{12}{8}
គុណ 2 ដង 4។
x=\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{12}{8} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 4។
\left(2x\right)^{2}-1=12x-10
ពិនិត្យ \left(2x-1\right)\left(2x+1\right)។ ផលគុណអាចបម្លែងទៅជាផលដកនៃការេដោយប្រើវិធាន៖ \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}។ ការ៉េ 1។
2^{2}x^{2}-1=12x-10
ពន្លាត \left(2x\right)^{2}។
4x^{2}-1=12x-10
គណនាស្វ័យគុណ 2 នៃ 2 ហើយបាន 4។
4x^{2}-1-12x=-10
ដក 12x ពីជ្រុងទាំងពីរ។
4x^{2}-12x=-10+1
បន្ថែម 1 ទៅជ្រុងទាំងពីរ។
4x^{2}-12x=-9
បូក -10 និង 1 ដើម្បីបាន -9។
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
ចែកជ្រុងទាំងពីនឹង 4។
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
ការចែកនឹង 4 មិនធ្វើប្រមាណវិធីគុណនឹង 4 ឡើងវិញ។
x^{2}-3x=-\frac{9}{4}
ចែក -12 នឹង 4។
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
ចែក -3 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{3}{2}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{3}{2} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
លើក -\frac{3}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-3x+\frac{9}{4}=0
បូក -\frac{9}{4} ជាមួយ \frac{9}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{3}{2}\right)^{2}=0
ដាក់ជាកត្តា x^{2}-3x+\frac{9}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{3}{2}=0 x-\frac{3}{2}=0
ផ្ទៀងផ្ទាត់។
x=\frac{3}{2} x=\frac{3}{2}
បូក \frac{3}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{3}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។ ចម្លើយគឺដូចគ្នា។