រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x (complex solution)
Tick mark Image
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{3}-6x^{2}+12x-8=64
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ដើម្បីពង្រីក \left(x-2\right)^{3}។
x^{3}-6x^{2}+12x-8-64=0
ដក 64 ពីជ្រុងទាំងពីរ។
x^{3}-6x^{2}+12x-72=0
ដក​ 64 ពី -8 ដើម្បីបាន -72។
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល​ p ចែកតួថេរ -72 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=6
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
x^{2}+12=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃ​ពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក x^{3}-6x^{2}+12x-72 នឹង x-6 ដើម្បីបានx^{2}+12។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
គ្រប់សមីការរ​ដែល​មានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយ​ដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, 0 សម្រាប់ b និង 12 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{0±\sqrt{-48}}{2}
ធ្វើការគណនា។
x=-2i\sqrt{3} x=2i\sqrt{3}
ដោះស្រាយសមីការ x^{2}+12=0 នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=6 x=-2i\sqrt{3} x=2i\sqrt{3}
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
x^{3}-6x^{2}+12x-8=64
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ដើម្បីពង្រីក \left(x-2\right)^{3}។
x^{3}-6x^{2}+12x-8-64=0
ដក 64 ពីជ្រុងទាំងពីរ។
x^{3}-6x^{2}+12x-72=0
ដក​ 64 ពី -8 ដើម្បីបាន -72។
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល​ p ចែកតួថេរ -72 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=6
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
x^{2}+12=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃ​ពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក x^{3}-6x^{2}+12x-72 នឹង x-6 ដើម្បីបានx^{2}+12។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
គ្រប់សមីការរ​ដែល​មានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយ​ដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, 0 សម្រាប់ b និង 12 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{0±\sqrt{-48}}{2}
ធ្វើការគណនា។
x\in \emptyset
មិនមានចម្លើយទេ ដោយសារតែឬសការេនៃចំនួន​អវិជ្ជមាន​មិនត្រូវបានកំណត់​នៅក្នុងកាយពិត​។
x=6
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។