រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-2x+1-4=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-2x-3=0
ដក​ 4 ពី 1 ដើម្បីបាន -3។
a+b=-2 ab=-3
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា x^{2}-2x-3 ដោយប្រើរូបមន្ដ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-3 b=1
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x-3\right)\left(x+1\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(x+a\right)\left(x+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
x=3 x=-1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-3=0 និង x+1=0។
x^{2}-2x+1-4=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-2x-3=0
ដក​ 4 ពី 1 ដើម្បីបាន -3។
a+b=-2 ab=1\left(-3\right)=-3
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx-3។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-3 b=1
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x^{2}-3x\right)+\left(x-3\right)
សរសេរ x^{2}-2x-3 ឡើងវិញជា \left(x^{2}-3x\right)+\left(x-3\right)។
x\left(x-3\right)+x-3
ដាក់ជាកត្តា x នៅក្នុង x^{2}-3x។
\left(x-3\right)\left(x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-3 ដោយប្រើលក្ខណៈបំបែក។
x=3 x=-1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-3=0 និង x+1=0។
x^{2}-2x+1-4=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-2x-3=0
ដក​ 4 ពី 1 ដើម្បីបាន -3។
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -2 សម្រាប់ b និង -3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
ការ៉េ -2។
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
គុណ -4 ដង -3។
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
បូក 4 ជាមួយ 12។
x=\frac{-\left(-2\right)±4}{2}
យកឬសការ៉េនៃ 16។
x=\frac{2±4}{2}
ភាពផ្ទុយគ្នានៃ -2 គឺ 2។
x=\frac{6}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{2±4}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 2 ជាមួយ 4។
x=3
ចែក 6 នឹង 2។
x=-\frac{2}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{2±4}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4 ពី 2។
x=-1
ចែក -2 នឹង 2។
x=3 x=-1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-2x+1-4=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
x^{2}-2x-3=0
ដក​ 4 ពី 1 ដើម្បីបាន -3។
x^{2}-2x=3
បន្ថែម 3 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
x^{2}-2x+1=3+1
ចែក -2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -1។ បន្ទាប់មក​បូកការ៉េនៃ -1 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-2x+1=4
បូក 3 ជាមួយ 1។
\left(x-1\right)^{2}=4
ដាក់ជាកត្តា x^{2}-2x+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-1=2 x-1=-2
ផ្ទៀងផ្ទាត់។
x=3 x=-1
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។