ដោះស្រាយសម្រាប់ x (complex solution)
x=-3\sqrt{3}i-3\approx -3-5.196152423i
x=6
x=-3+3\sqrt{3}i\approx -3+5.196152423i
ដោះស្រាយសម្រាប់ x
x=6
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x^{3}-1=43\times 5
គុណជ្រុងទាំងពីរនឹង 5។
x^{3}-1=215
គុណ 43 និង 5 ដើម្បីបាន 215។
x^{3}-1-215=0
ដក 215 ពីជ្រុងទាំងពីរ។
x^{3}-216=0
ដក 215 ពី -1 ដើម្បីបាន -216។
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ -216 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=6
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
x^{2}+6x+36=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក x^{3}-216 នឹង x-6 ដើម្បីបានx^{2}+6x+36។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, 6 សម្រាប់ b និង 36 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{-6±\sqrt{-108}}{2}
ធ្វើការគណនា។
x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
ដោះស្រាយសមីការ x^{2}+6x+36=0 នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=6 x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
x^{3}-1=43\times 5
គុណជ្រុងទាំងពីរនឹង 5។
x^{3}-1=215
គុណ 43 និង 5 ដើម្បីបាន 215។
x^{3}-1-215=0
ដក 215 ពីជ្រុងទាំងពីរ។
x^{3}-216=0
ដក 215 ពី -1 ដើម្បីបាន -216។
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ -216 ហើយ q ចែកមេគុណនាំមុខ 1។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=6
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
x^{2}+6x+36=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក x^{3}-216 នឹង x-6 ដើម្បីបានx^{2}+6x+36។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, 6 សម្រាប់ b និង 36 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{-6±\sqrt{-108}}{2}
ធ្វើការគណនា។
x\in \emptyset
មិនមានចម្លើយទេ ដោយសារតែឬសការេនៃចំនួនអវិជ្ជមានមិនត្រូវបានកំណត់នៅក្នុងកាយពិត។
x=6
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}