រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ w
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

w^{2}-2w+1-3^{2}=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(w-1\right)^{2}។
w^{2}-2w+1-9=0
គណនាស្វ័យគុណ 3 នៃ 2 ហើយបាន 9។
w^{2}-2w-8=0
ដក​ 9 ពី 1 ដើម្បីបាន -8។
a+b=-2 ab=-8
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា w^{2}-2w-8 ដោយប្រើរូបមន្ដ w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right)។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-8 2,-4
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -8។
1-8=-7 2-4=-2
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-4 b=2
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -2 ។
\left(w-4\right)\left(w+2\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(w+a\right)\left(w+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
w=4 w=-2
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ w-4=0 និង w+2=0។
w^{2}-2w+1-3^{2}=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(w-1\right)^{2}។
w^{2}-2w+1-9=0
គណនាស្វ័យគុណ 3 នៃ 2 ហើយបាន 9។
w^{2}-2w-8=0
ដក​ 9 ពី 1 ដើម្បីបាន -8។
a+b=-2 ab=1\left(-8\right)=-8
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា w^{2}+aw+bw-8។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-8 2,-4
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -8។
1-8=-7 2-4=-2
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-4 b=2
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -2 ។
\left(w^{2}-4w\right)+\left(2w-8\right)
សរសេរ w^{2}-2w-8 ឡើងវិញជា \left(w^{2}-4w\right)+\left(2w-8\right)។
w\left(w-4\right)+2\left(w-4\right)
ដាក់ជាកត្តា w នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(w-4\right)\left(w+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា w-4 ដោយប្រើលក្ខណៈបំបែក។
w=4 w=-2
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ w-4=0 និង w+2=0។
w^{2}-2w+1-3^{2}=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(w-1\right)^{2}។
w^{2}-2w+1-9=0
គណនាស្វ័យគុណ 3 នៃ 2 ហើយបាន 9។
w^{2}-2w-8=0
ដក​ 9 ពី 1 ដើម្បីបាន -8។
w=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -2 សម្រាប់ b និង -8 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
w=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
ការ៉េ -2។
w=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
គុណ -4 ដង -8។
w=\frac{-\left(-2\right)±\sqrt{36}}{2}
បូក 4 ជាមួយ 32។
w=\frac{-\left(-2\right)±6}{2}
យកឬសការ៉េនៃ 36។
w=\frac{2±6}{2}
ភាពផ្ទុយគ្នានៃ -2 គឺ 2។
w=\frac{8}{2}
ឥឡូវដោះស្រាយសមីការរ w=\frac{2±6}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 2 ជាមួយ 6។
w=4
ចែក 8 នឹង 2។
w=-\frac{4}{2}
ឥឡូវដោះស្រាយសមីការរ w=\frac{2±6}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 6 ពី 2។
w=-2
ចែក -4 នឹង 2។
w=4 w=-2
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
w^{2}-2w+1-3^{2}=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(w-1\right)^{2}។
w^{2}-2w+1-9=0
គណនាស្វ័យគុណ 3 នៃ 2 ហើយបាន 9។
w^{2}-2w-8=0
ដក​ 9 ពី 1 ដើម្បីបាន -8។
w^{2}-2w=8
បន្ថែម 8 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
w^{2}-2w+1=8+1
ចែក -2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -1។ បន្ទាប់មក​បូកការ៉េនៃ -1 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
w^{2}-2w+1=9
បូក 8 ជាមួយ 1។
\left(w-1\right)^{2}=9
ដាក់ជាកត្តា w^{2}-2w+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(w-1\right)^{2}}=\sqrt{9}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
w-1=3 w-1=-3
ផ្ទៀងផ្ទាត់។
w=4 w=-2
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។