វាយតម្លៃ
\left(4y+k\right)^{2}-24y^{2}+88y-80
ពន្លាត
-8y^{2}+8ky+88y+k^{2}-80
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
k^{2}+8ky+16y^{2}-4\left(2-y\right)\left(10-6y\right)
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ដើម្បីពង្រីក \left(k+4y\right)^{2}។
k^{2}+8ky+16y^{2}+\left(-8+4y\right)\left(10-6y\right)
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -4 នឹង 2-y។
k^{2}+8ky+16y^{2}-80+88y-24y^{2}
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -8+4y នឹង 10-6y ហើយបន្សំដូចតួ។
k^{2}+8ky-8y^{2}-80+88y
បន្សំ 16y^{2} និង -24y^{2} ដើម្បីបាន -8y^{2}។
k^{2}+8ky+16y^{2}-4\left(2-y\right)\left(10-6y\right)
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ដើម្បីពង្រីក \left(k+4y\right)^{2}។
k^{2}+8ky+16y^{2}+\left(-8+4y\right)\left(10-6y\right)
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -4 នឹង 2-y។
k^{2}+8ky+16y^{2}-80+88y-24y^{2}
ប្រើលក្ខណៈបំបែកដើម្បីគុណ -8+4y នឹង 10-6y ហើយបន្សំដូចតួ។
k^{2}+8ky-8y^{2}-80+88y
បន្សំ 16y^{2} និង -24y^{2} ដើម្បីបាន -8y^{2}។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}