រំលងទៅមាតិកាមេ
វាយតម្លៃ
Tick mark Image
ចំនួនពិត
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3i^{2}\right)\left(3+2i\right)
គុណ \frac{3}{2}i ដង 4+3i។
\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)\right)\left(3+2i\right)
តាមនិយមន័យ i^{2} គឺ -1។
\left(-\frac{9}{2}+6i\right)\left(3+2i\right)
ធ្វើផល​គុណ។ តម្រៀបលំដាប់តួឡើងវិញ។
-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2i^{2}
គុណចំនួនកុំផ្លិច -\frac{9}{2}+6i និង 3+2i ដូចដែលអ្នកគុណទ្វេធា។
-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right)
តាមនិយមន័យ i^{2} គឺ -1។
-\frac{27}{2}-9i+18i-12
ធ្វើផល​គុណ។
-\frac{27}{2}-12+\left(-9+18\right)i
បន្សំផ្នែកពិត និងផ្នែកនិមិត្ត។
-\frac{51}{2}+9i
ធ្វើផលបូក។
Re(\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3i^{2}\right)\left(3+2i\right))
គុណ \frac{3}{2}i ដង 4+3i។
Re(\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)\right)\left(3+2i\right))
តាមនិយមន័យ i^{2} គឺ -1។
Re(\left(-\frac{9}{2}+6i\right)\left(3+2i\right))
ធ្វើផល​គុណនៅក្នុង \frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)។ តម្រៀបលំដាប់តួឡើងវិញ។
Re(-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2i^{2})
គុណចំនួនកុំផ្លិច -\frac{9}{2}+6i និង 3+2i ដូចដែលអ្នកគុណទ្វេធា។
Re(-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right))
តាមនិយមន័យ i^{2} គឺ -1។
Re(-\frac{27}{2}-9i+18i-12)
ធ្វើផល​គុណនៅក្នុង -\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right)។
Re(-\frac{27}{2}-12+\left(-9+18\right)i)
បន្សំផ្នែកពិត និងផ្នែកនិមិត្តនៅក្នុង -\frac{27}{2}-9i+18i-12។
Re(-\frac{51}{2}+9i)
ធ្វើផលបូកនៅក្នុង -\frac{27}{2}-12+\left(-9+18\right)i។
-\frac{51}{2}
ផ្នែកពិតនៃ -\frac{51}{2}+9i គឺ -\frac{51}{2}។