រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x^{2}-x-3=3
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ 2x-3 នឹង x+1 ហើយបន្សំដូចតួ។
2x^{2}-x-3-3=0
ដក 3 ពីជ្រុងទាំងពីរ។
2x^{2}-x-6=0
ដក​ 3 ពី -3 ដើម្បីបាន -6។
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -1 សម្រាប់ b និង -6 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
គុណ -8 ដង -6។
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
បូក 1 ជាមួយ 48។
x=\frac{-\left(-1\right)±7}{2\times 2}
យកឬសការ៉េនៃ 49។
x=\frac{1±7}{2\times 2}
ភាពផ្ទុយគ្នានៃ -1 គឺ 1។
x=\frac{1±7}{4}
គុណ 2 ដង 2។
x=\frac{8}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±7}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 1 ជាមួយ 7។
x=2
ចែក 8 នឹង 4។
x=-\frac{6}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±7}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 7 ពី 1។
x=-\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{-6}{4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=2 x=-\frac{3}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}-x-3=3
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ 2x-3 នឹង x+1 ហើយបន្សំដូចតួ។
2x^{2}-x=3+3
បន្ថែម 3 ទៅជ្រុងទាំងពីរ។
2x^{2}-x=6
បូក 3 និង 3 ដើម្បីបាន 6។
\frac{2x^{2}-x}{2}=\frac{6}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}-\frac{1}{2}x=\frac{6}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}-\frac{1}{2}x=3
ចែក 6 នឹង 2។
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
ចែក -\frac{1}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{1}{4}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{1}{4} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
លើក -\frac{1}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
បូក 3 ជាមួយ \frac{1}{16}។
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
ដាក់ជាកត្តា x^{2}-\frac{1}{2}x+\frac{1}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
ផ្ទៀងផ្ទាត់។
x=2 x=-\frac{3}{2}
បូក \frac{1}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។