វាយតម្លៃ
\left(x-1\right)\left(5x+4\right)
ដាក់ជាកត្តា
\left(x-1\right)\left(5x+4\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x^{2}-11x+10x-4
បន្សំ 2x^{2} និង 3x^{2} ដើម្បីបាន 5x^{2}។
5x^{2}-x-4
បន្សំ -11x និង 10x ដើម្បីបាន -x។
5x^{2}-x-4
គុណ និងបន្សំតួដូចគ្នា។
a+b=-1 ab=5\left(-4\right)=-20
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 5x^{2}+ax+bx-4។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-20 2,-10 4,-5
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -20។
1-20=-19 2-10=-8 4-5=-1
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-5 b=4
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -1 ។
\left(5x^{2}-5x\right)+\left(4x-4\right)
សរសេរ 5x^{2}-x-4 ឡើងវិញជា \left(5x^{2}-5x\right)+\left(4x-4\right)។
5x\left(x-1\right)+4\left(x-1\right)
ដាក់ជាកត្តា 5x នៅក្នុងក្រុមទីមួយ និង 4 ក្រុមទីពីរចេញ។
\left(x-1\right)\left(5x+4\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-1 ដោយប្រើលក្ខណៈបំបែក។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}