ដោះស្រាយសម្រាប់ x
\left\{\begin{matrix}x=\frac{\sqrt{y^{4}-2y^{3}+y^{2}+648}}{24}-\frac{y^{2}}{8}+\frac{y}{8}\text{, }&\frac{\sqrt{y^{4}-2y^{3}+y^{2}+648}}{24}-\frac{y^{2}}{8}+\frac{y}{8}\geq 0\text{ and }\frac{\sqrt{y^{4}-2y^{3}+y^{2}+648}}{24}-\frac{y^{2}}{72}+\frac{y}{72}\leq 0\text{ and }y^{4}-2y^{3}+y^{2}+648\geq 0\\x=-\frac{\sqrt{y^{4}-2y^{3}+y^{2}+648}}{24}-\frac{y^{2}}{8}+\frac{y}{8}\text{, }&-\frac{\sqrt{y^{4}-2y^{3}+y^{2}+648}}{24}-\frac{y^{2}}{8}+\frac{y}{8}\geq 0\text{ and }-\frac{\sqrt{y^{4}-2y^{3}+y^{2}+648}}{24}-\frac{y^{2}}{72}+\frac{y}{72}\leq 0\text{ and }y^{4}-2y^{3}+y^{2}+648\geq 0\\x=\frac{3\sqrt{y^{4}-2y^{3}+y^{2}+1440}+13y^{2}-13y}{160}\text{, }&\frac{3\sqrt{y^{4}-2y^{3}+y^{2}+1440}+13y^{2}-13y}{160}\leq 0\text{ and }\frac{3\sqrt{y^{4}-2y^{3}+y^{2}+1440}}{160}+\frac{9y^{2}}{2080}-\frac{9y}{2080}\geq 0\text{ and }y^{4}-2y^{3}+y^{2}+1440\geq 0\\x=\frac{-3\sqrt{y^{4}-2y^{3}+y^{2}+1440}+13y^{2}-13y}{160}\text{, }&\frac{-3\sqrt{y^{4}-2y^{3}+y^{2}+1440}+13y^{2}-13y}{160}\leq 0\text{ and }-\frac{3\sqrt{y^{4}-2y^{3}+y^{2}+1440}}{160}+\frac{9y^{2}}{2080}-\frac{9y}{2080}\geq 0\text{ and }y^{4}-2y^{3}+y^{2}+1440\geq 0\end{matrix}\right.
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}