ដោះស្រាយសម្រាប់ x (complex solution)
x\in \frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}
ដោះស្រាយសម្រាប់ x
x=\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}\approx 0.72556263
x = \frac{2 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{5} + 3}}{2} \approx 1.378240772
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x^{3}x^{3}+1=3x^{3}
អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ x^{3}។
x^{6}+1=3x^{3}
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូកនិទស្សន្តរបស់ពួកវា។ បូក 3 និង 3 ដើម្បីទទួលបាន 6។
x^{6}+1-3x^{3}=0
ដក 3x^{3} ពីជ្រុងទាំងពីរ។
t^{2}-3t+1=0
ជំនួស t សម្រាប់ x^{3}។
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -3 សម្រាប់ b និង 1 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
t=\frac{3±\sqrt{5}}{2}
ធ្វើការគណនា។
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
ដោះស្រាយសមីការ t=\frac{3±\sqrt{5}}{2} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
ដោយសារ x=t^{3} ចម្លើយទទួលបានដោយការដោះស្រាយសមីការរសម្រាប់ t នីមួយៗ។
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
អថេរ x មិនអាចស្មើនឹង 0 បានទេ។
x^{3}x^{3}+1=3x^{3}
អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ x^{3}។
x^{6}+1=3x^{3}
ដើម្បីគុណស្វ័យគុណនៃគោលដូចគ្នា ត្រូវបូកនិទស្សន្តរបស់ពួកវា។ បូក 3 និង 3 ដើម្បីទទួលបាន 6។
x^{6}+1-3x^{3}=0
ដក 3x^{3} ពីជ្រុងទាំងពីរ។
t^{2}-3t+1=0
ជំនួស t សម្រាប់ x^{3}។
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -3 សម្រាប់ b និង 1 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
t=\frac{3±\sqrt{5}}{2}
ធ្វើការគណនា។
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
ដោះស្រាយសមីការ t=\frac{3±\sqrt{5}}{2} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
ដោយ x=t^{3} ចម្លើយត្រូវទទួលបានដោយការវាយតម្លៃ x=\sqrt[3]{t} សម្រាប់ t នីមួយៗ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}