ដោះស្រាយសម្រាប់ x
x=-3
x=9
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=-6 ab=-27
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា x^{2}-6x-27 ដោយប្រើរូបមន្ដ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-27 3,-9
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -27។
1-27=-26 3-9=-6
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-9 b=3
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -6 ។
\left(x-9\right)\left(x+3\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(x+a\right)\left(x+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
x=9 x=-3
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-9=0 និង x+3=0។
a+b=-6 ab=1\left(-27\right)=-27
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx-27។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-27 3,-9
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -27។
1-27=-26 3-9=-6
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-9 b=3
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -6 ។
\left(x^{2}-9x\right)+\left(3x-27\right)
សរសេរ x^{2}-6x-27 ឡើងវិញជា \left(x^{2}-9x\right)+\left(3x-27\right)។
x\left(x-9\right)+3\left(x-9\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 3 ក្រុមទីពីរចេញ។
\left(x-9\right)\left(x+3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-9 ដោយប្រើលក្ខណៈបំបែក។
x=9 x=-3
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-9=0 និង x+3=0។
x^{2}-6x-27=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -6 សម្រាប់ b និង -27 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
ការ៉េ -6។
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
គុណ -4 ដង -27។
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
បូក 36 ជាមួយ 108។
x=\frac{-\left(-6\right)±12}{2}
យកឬសការ៉េនៃ 144។
x=\frac{6±12}{2}
ភាពផ្ទុយគ្នានៃ -6 គឺ 6។
x=\frac{18}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±12}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 6 ជាមួយ 12។
x=9
ចែក 18 នឹង 2។
x=-\frac{6}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±12}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 12 ពី 6។
x=-3
ចែក -6 នឹង 2។
x=9 x=-3
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-6x-27=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
x^{2}-6x-27-\left(-27\right)=-\left(-27\right)
បូក 27 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x^{2}-6x=-\left(-27\right)
ការដក -27 ពីខ្លួនឯងនៅសល់ 0។
x^{2}-6x=27
ដក -27 ពី 0។
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
ចែក -6 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -3។ បន្ទាប់មកបូកការ៉េនៃ -3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-6x+9=27+9
ការ៉េ -3។
x^{2}-6x+9=36
បូក 27 ជាមួយ 9។
\left(x-3\right)^{2}=36
ដាក់ជាកត្តា x^{2}-6x+9 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-3=6 x-3=-6
ផ្ទៀងផ្ទាត់។
x=9 x=-3
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}