ដាក់ជាកត្តា
\left(x-25\right)\left(x-16\right)
វាយតម្លៃ
\left(x-25\right)\left(x-16\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=-41 ab=1\times 400=400
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+400។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-400 -2,-200 -4,-100 -5,-80 -8,-50 -10,-40 -16,-25 -20,-20
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 400។
-1-400=-401 -2-200=-202 -4-100=-104 -5-80=-85 -8-50=-58 -10-40=-50 -16-25=-41 -20-20=-40
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-25 b=-16
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -41 ។
\left(x^{2}-25x\right)+\left(-16x+400\right)
សរសេរ x^{2}-41x+400 ឡើងវិញជា \left(x^{2}-25x\right)+\left(-16x+400\right)។
x\left(x-25\right)-16\left(x-25\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -16 ក្រុមទីពីរចេញ។
\left(x-25\right)\left(x-16\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-25 ដោយប្រើលក្ខណៈបំបែក។
x^{2}-41x+400=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 400}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 400}}{2}
ការ៉េ -41។
x=\frac{-\left(-41\right)±\sqrt{1681-1600}}{2}
គុណ -4 ដង 400។
x=\frac{-\left(-41\right)±\sqrt{81}}{2}
បូក 1681 ជាមួយ -1600។
x=\frac{-\left(-41\right)±9}{2}
យកឬសការ៉េនៃ 81។
x=\frac{41±9}{2}
ភាពផ្ទុយគ្នានៃ -41 គឺ 41។
x=\frac{50}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{41±9}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 41 ជាមួយ 9។
x=25
ចែក 50 នឹង 2។
x=\frac{32}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{41±9}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 9 ពី 41។
x=16
ចែក 32 នឹង 2។
x^{2}-41x+400=\left(x-25\right)\left(x-16\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 25 សម្រាប់ x_{1} និង 16 សម្រាប់ x_{2}។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}