រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-11x=-24
ដក 11x ពីជ្រុងទាំងពីរ។
x^{2}-11x+24=0
បន្ថែម 24 ទៅជ្រុងទាំងពីរ។
a+b=-11 ab=24
ដើម្បីដោះស្រាយសមីការ សូមដាក់ជាកត្តា x^{2}-11x+24 ដោយប្រើរូបមន្ដ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,-24 -2,-12 -3,-8 -4,-6
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ 24។
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-8 b=-3
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -11 ។
\left(x-8\right)\left(x-3\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តា \left(x+a\right)\left(x+b\right) ដោយប្រើតម្លៃដែលទទួលបាន។
x=8 x=3
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-8=0 និង x-3=0។
x^{2}-11x=-24
ដក 11x ពីជ្រុងទាំងពីរ។
x^{2}-11x+24=0
បន្ថែម 24 ទៅជ្រុងទាំងពីរ។
a+b=-11 ab=1\times 24=24
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+24។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,-24 -2,-12 -3,-8 -4,-6
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ 24។
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-8 b=-3
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -11 ។
\left(x^{2}-8x\right)+\left(-3x+24\right)
សរសេរ x^{2}-11x+24 ឡើងវិញជា \left(x^{2}-8x\right)+\left(-3x+24\right)។
x\left(x-8\right)-3\left(x-8\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -3 ក្រុមទីពីរចេញ។
\left(x-8\right)\left(x-3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-8 ដោយប្រើលក្ខណៈបំបែក។
x=8 x=3
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-8=0 និង x-3=0។
x^{2}-11x=-24
ដក 11x ពីជ្រុងទាំងពីរ។
x^{2}-11x+24=0
បន្ថែម 24 ទៅជ្រុងទាំងពីរ។
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, -11 សម្រាប់ b និង 24 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
ការ៉េ -11។
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
គុណ -4 ដង 24។
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
បូក 121 ជាមួយ -96។
x=\frac{-\left(-11\right)±5}{2}
យកឬសការ៉េនៃ 25។
x=\frac{11±5}{2}
ភាពផ្ទុយគ្នានៃ -11 គឺ 11។
x=\frac{16}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{11±5}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 11 ជាមួយ 5។
x=8
ចែក 16 នឹង 2។
x=\frac{6}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{11±5}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5 ពី 11។
x=3
ចែក 6 នឹង 2។
x=8 x=3
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
x^{2}-11x=-24
ដក 11x ពីជ្រុងទាំងពីរ។
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-24+\left(-\frac{11}{2}\right)^{2}
ចែក -11 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{11}{2}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{11}{2} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-11x+\frac{121}{4}=-24+\frac{121}{4}
លើក -\frac{11}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-11x+\frac{121}{4}=\frac{25}{4}
បូក -24 ជាមួយ \frac{121}{4}។
\left(x-\frac{11}{2}\right)^{2}=\frac{25}{4}
ដាក់ជាកត្តា x^{2}-11x+\frac{121}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{11}{2}=\frac{5}{2} x-\frac{11}{2}=-\frac{5}{2}
ផ្ទៀងផ្ទាត់។
x=8 x=3
បូក \frac{11}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។