ដោះស្រាយសម្រាប់ x
x=8\sqrt{91}\approx 76.315136113
x=-8\sqrt{91}\approx -76.315136113
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
9801+x^{2}=125^{2}
គណនាស្វ័យគុណ 99 នៃ 2 ហើយបាន 9801។
9801+x^{2}=15625
គណនាស្វ័យគុណ 125 នៃ 2 ហើយបាន 15625។
x^{2}=15625-9801
ដក 9801 ពីជ្រុងទាំងពីរ។
x^{2}=5824
ដក 9801 ពី 15625 ដើម្បីបាន 5824។
x=8\sqrt{91} x=-8\sqrt{91}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
9801+x^{2}=125^{2}
គណនាស្វ័យគុណ 99 នៃ 2 ហើយបាន 9801។
9801+x^{2}=15625
គណនាស្វ័យគុណ 125 នៃ 2 ហើយបាន 15625។
9801+x^{2}-15625=0
ដក 15625 ពីជ្រុងទាំងពីរ។
-5824+x^{2}=0
ដក 15625 ពី 9801 ដើម្បីបាន -5824។
x^{2}-5824=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះ ដែលមានតួ x^{2} ប៉ុន្តែគ្មានតួ x អាចនៅតែដោះស្រាយបានដោយប្រើរូបមន្ដកាដ្រាទីក \frac{-b±\sqrt{b^{2}-4ac}}{2a} នៅពេលវាត្រូវបានដាក់នៅក្នុងទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។
x=\frac{0±\sqrt{0^{2}-4\left(-5824\right)}}{2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 1 សម្រាប់ a, 0 សម្រាប់ b និង -5824 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{0±\sqrt{-4\left(-5824\right)}}{2}
ការ៉េ 0។
x=\frac{0±\sqrt{23296}}{2}
គុណ -4 ដង -5824។
x=\frac{0±16\sqrt{91}}{2}
យកឬសការ៉េនៃ 23296។
x=8\sqrt{91}
ឥឡូវដោះស្រាយសមីការរ x=\frac{0±16\sqrt{91}}{2} នៅពេល ± គឺជាសញ្ញាបូក។
x=-8\sqrt{91}
ឥឡូវដោះស្រាយសមីការរ x=\frac{0±16\sqrt{91}}{2} នៅពេល ± គឺជាសញ្ញាដក។
x=8\sqrt{91} x=-8\sqrt{91}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}