ធ្វើឌីផេរ៉ងស្យែល w.r.t. α
\frac{1}{\left(\cos(\alpha )\right)^{2}}
វាយតម្លៃ
\tan(\alpha )
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{\mathrm{d}}{\mathrm{d}\alpha }(\frac{\sin(\alpha )}{\cos(\alpha )})
ប្រើនិយមន័យតង់សង់។
\frac{\cos(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\sin(\alpha ))-\sin(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))}{\left(\cos(\alpha )\right)^{2}}
សម្រាប់អនុគមន៍ឌីផេរ៉ង់ស្យែលពីរ ដេរីវេនៃផលចែកនៃអនុគមន៍ចំនួនពីរគឺជាភាគបែងគុណនឹងដេរីវេនៃភាគយកដកភាគយកគុណនឹងដេរីវេនៃភាគបែង ទាំងអស់ចែកដោយភាគបែងដែលបានលើកជាការ៉េ។
\frac{\cos(\alpha )\cos(\alpha )-\sin(\alpha )\left(-\sin(\alpha )\right)}{\left(\cos(\alpha )\right)^{2}}
ដេរីវេនៃ sin(\alpha ) គឺជា cos(\alpha ) និងដេរីវេនៃ cos(\alpha ) គឺជា −sin(\alpha )។
\frac{\left(\cos(\alpha )\right)^{2}+\left(\sin(\alpha )\right)^{2}}{\left(\cos(\alpha )\right)^{2}}
ផ្ទៀងផ្ទាត់។
\frac{1}{\left(\cos(\alpha )\right)^{2}}
ប្រើលក្ខណៈពីតាករ។
\left(\sec(\alpha )\right)^{2}
ប្រើនិយមន័យសេកង់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}