រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x+5y=1,x+y=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+5y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-5y+1
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-5y+1\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{5}{3}y+\frac{1}{3}
គុណ \frac{1}{3} ដង -5y+1។
-\frac{5}{3}y+\frac{1}{3}+y=1
ជំនួស \frac{-5y+1}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+y=1។
-\frac{2}{3}y+\frac{1}{3}=1
បូក -\frac{5y}{3} ជាមួយ y។
-\frac{2}{3}y=\frac{2}{3}
ដក \frac{1}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{2}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{5}{3}\left(-1\right)+\frac{1}{3}
ជំនួស -1 សម្រាប់ y ក្នុង x=-\frac{5}{3}y+\frac{1}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{5+1}{3}
គុណ -\frac{5}{3} ដង -1។
x=2
បូក \frac{1}{3} ជាមួយ \frac{5}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x+5y=1,x+y=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}3&5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&5\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-5}&-\frac{5}{3-5}\\-\frac{1}{3-5}&\frac{3}{3-5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{5}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{-1+5}{2}\\\frac{1-3}{2}\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x+5y=1,x+y=1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+5y=1,3x+3y=3
ដើម្បីធ្វើឲ្យ 3x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
3x-3x+5y-3y=1-3
ដក 3x+3y=3 ពី 3x+5y=1 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y-3y=1-3
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
2y=1-3
បូក 5y ជាមួយ -3y។
2y=-2
បូក 1 ជាមួយ -3។
y=-1
ចែកជ្រុងទាំងពីនឹង 2។
x-1=1
ជំនួស -1 សម្រាប់ y ក្នុង x+y=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=2
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=2,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។