រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x-3y=1,x+2y=4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-3y=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=3y+1
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(3y+1\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{3}{2}y+\frac{1}{2}
គុណ \frac{1}{2} ដង 3y+1។
\frac{3}{2}y+\frac{1}{2}+2y=4
ជំនួស \frac{3y+1}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+2y=4។
\frac{7}{2}y+\frac{1}{2}=4
បូក \frac{3y}{2} ជាមួយ 2y។
\frac{7}{2}y=\frac{7}{2}
ដក \frac{1}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=1
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{7}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3+1}{2}
ជំនួស 1 សម្រាប់ y ក្នុង x=\frac{3}{2}y+\frac{1}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=2
បូក \frac{1}{2} ជាមួយ \frac{3}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-3y=1,x+2y=4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}2&-3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-3\\1&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\right)}&-\frac{-3}{2\times 2-\left(-3\right)}\\-\frac{1}{2\times 2-\left(-3\right)}&\frac{2}{2\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}+\frac{3}{7}\times 4\\-\frac{1}{7}+\frac{2}{7}\times 4\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=1
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-3y=1,x+2y=4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x-3y=1,2x+2\times 2y=2\times 4
ដើម្បីធ្វើឲ្យ 2x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
2x-3y=1,2x+4y=8
ផ្ទៀងផ្ទាត់។
2x-2x-3y-4y=1-8
ដក 2x+4y=8 ពី 2x-3y=1 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-4y=1-8
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-7y=1-8
បូក -3y ជាមួយ -4y។
-7y=-7
បូក 1 ជាមួយ -8។
y=1
ចែកជ្រុងទាំងពីនឹង -7។
x+2=4
ជំនួស 1 សម្រាប់ y ក្នុង x+2y=4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=2
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។