រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-y=4,3x-y=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y+4
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3\left(y+4\right)-y=7
ជំនួស y+4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x-y=7។
3y+12-y=7
គុណ 3 ដង y+4។
2y+12=7
បូក 3y ជាមួយ -y។
2y=-5
ដក 12 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{5}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{5}{2}+4
ជំនួស -\frac{5}{2} សម្រាប់ y ក្នុង x=y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{3}{2}
បូក 4 ជាមួយ -\frac{5}{2}។
x=\frac{3}{2},y=-\frac{5}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-y=4,3x-y=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\3&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\right)}&-\frac{-1}{-1-\left(-3\right)}\\-\frac{3}{-1-\left(-3\right)}&\frac{1}{-1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-\frac{3}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 4+\frac{1}{2}\times 7\\-\frac{3}{2}\times 4+\frac{1}{2}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-\frac{5}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{3}{2},y=-\frac{5}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-y=4,3x-y=7
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-3x-y+y=4-7
ដក 3x-y=7 ពី x-y=4 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
x-3x=4-7
បូក -y ជាមួយ y។ ការលុបតួ -y និង y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2x=4-7
បូក x ជាមួយ -3x។
-2x=-3
បូក 4 ជាមួយ -7។
x=\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង -2។
3\times \frac{3}{2}-y=7
ជំនួស \frac{3}{2} សម្រាប់ x ក្នុង 3x-y=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
\frac{9}{2}-y=7
គុណ 3 ដង \frac{3}{2}។
-y=\frac{5}{2}
ដក \frac{9}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{5}{2}
ចែកជ្រុងទាំងពីនឹង -1។
x=\frac{3}{2},y=-\frac{5}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។