ដោះស្រាយសម្រាប់ x, y
x=3
y=-1
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
4x+8y-x=-y
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 4 នឹង x+2y។
3x+8y=-y
បន្សំ 4x និង -x ដើម្បីបាន 3x។
3x+8y+y=0
បន្ថែម y ទៅជ្រុងទាំងពីរ។
3x+9y=0
បន្សំ 8y និង y ដើម្បីបាន 9y។
-3x-2y=-4-x
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2y ពីជ្រុងទាំងពីរ។
-3x-2y+x=-4
បន្ថែម x ទៅជ្រុងទាំងពីរ។
-2x-2y=-4
បន្សំ -3x និង x ដើម្បីបាន -2x។
3x+9y=0,-2x-2y=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x+9y=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=-9y
ដក 9y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(-9\right)y
ចែកជ្រុងទាំងពីនឹង 3។
x=-3y
គុណ \frac{1}{3} ដង -9y។
-2\left(-3\right)y-2y=-4
ជំនួស -3y សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x-2y=-4។
6y-2y=-4
គុណ -2 ដង -3y។
4y=-4
បូក 6y ជាមួយ -2y។
y=-1
ចែកជ្រុងទាំងពីនឹង 4។
x=-3\left(-1\right)
ជំនួស -1 សម្រាប់ y ក្នុង x=-3y។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=3
គុណ -3 ដង -1។
x=3,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x+8y-x=-y
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 4 នឹង x+2y។
3x+8y=-y
បន្សំ 4x និង -x ដើម្បីបាន 3x។
3x+8y+y=0
បន្ថែម y ទៅជ្រុងទាំងពីរ។
3x+9y=0
បន្សំ 8y និង y ដើម្បីបាន 9y។
-3x-2y=-4-x
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2y ពីជ្រុងទាំងពីរ។
-3x-2y+x=-4
បន្ថែម x ទៅជ្រុងទាំងពីរ។
-2x-2y=-4
បន្សំ -3x និង x ដើម្បីបាន -2x។
3x+9y=0,-2x-2y=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&9\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&9\\-2&-2\end{matrix}\right))\left(\begin{matrix}3&9\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\-2&-2\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&9\\-2&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\-2&-2\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\-2&-2\end{matrix}\right))\left(\begin{matrix}0\\-4\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-9\left(-2\right)}&-\frac{9}{3\left(-2\right)-9\left(-2\right)}\\-\frac{-2}{3\left(-2\right)-9\left(-2\right)}&\frac{3}{3\left(-2\right)-9\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&-\frac{3}{4}\\\frac{1}{6}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\left(-4\right)\\\frac{1}{4}\left(-4\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x+8y-x=-y
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្រើលក្ខណៈបំបែកដើម្បីគុណ 4 នឹង x+2y។
3x+8y=-y
បន្សំ 4x និង -x ដើម្បីបាន 3x។
3x+8y+y=0
បន្ថែម y ទៅជ្រុងទាំងពីរ។
3x+9y=0
បន្សំ 8y និង y ដើម្បីបាន 9y។
-3x-2y=-4-x
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2y ពីជ្រុងទាំងពីរ។
-3x-2y+x=-4
បន្ថែម x ទៅជ្រុងទាំងពីរ។
-2x-2y=-4
បន្សំ -3x និង x ដើម្បីបាន -2x។
3x+9y=0,-2x-2y=-4
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2\times 3x-2\times 9y=0,3\left(-2\right)x+3\left(-2\right)y=3\left(-4\right)
ដើម្បីធ្វើឲ្យ 3x និង -2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 3។
-6x-18y=0,-6x-6y=-12
ផ្ទៀងផ្ទាត់។
-6x+6x-18y+6y=12
ដក -6x-6y=-12 ពី -6x-18y=0 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-18y+6y=12
បូក -6x ជាមួយ 6x។ ការលុបតួ -6x និង 6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-12y=12
បូក -18y ជាមួយ 6y។
y=-1
ចែកជ្រុងទាំងពីនឹង -12។
-2x-2\left(-1\right)=-4
ជំនួស -1 សម្រាប់ y ក្នុង -2x-2y=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-2x+2=-4
គុណ -2 ដង -1។
-2x=-6
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង -2។
x=3,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}