រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

7x-8y=-12,-4x+2y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
7x-8y=-12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
7x=8y-12
បូក 8y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{7}\left(8y-12\right)
ចែកជ្រុងទាំងពីនឹង 7។
x=\frac{8}{7}y-\frac{12}{7}
គុណ \frac{1}{7} ដង 8y-12។
-4\left(\frac{8}{7}y-\frac{12}{7}\right)+2y=3
ជំនួស \frac{8y-12}{7} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -4x+2y=3។
-\frac{32}{7}y+\frac{48}{7}+2y=3
គុណ -4 ដង \frac{8y-12}{7}។
-\frac{18}{7}y+\frac{48}{7}=3
បូក -\frac{32y}{7} ជាមួយ 2y។
-\frac{18}{7}y=-\frac{27}{7}
ដក \frac{48}{7} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{3}{2}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{18}{7} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{8}{7}\times \frac{3}{2}-\frac{12}{7}
ជំនួស \frac{3}{2} សម្រាប់ y ក្នុង x=\frac{8}{7}y-\frac{12}{7}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{12-12}{7}
គុណ \frac{8}{7} ដង \frac{3}{2} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=0
បូក -\frac{12}{7} ជាមួយ \frac{12}{7} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=0,y=\frac{3}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
7x-8y=-12,-4x+2y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}7&-8\\-4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}7&-8\\-4&2\end{matrix}\right))\left(\begin{matrix}7&-8\\-4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\-4&2\end{matrix}\right))\left(\begin{matrix}-12\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}7&-8\\-4&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\-4&2\end{matrix}\right))\left(\begin{matrix}-12\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\-4&2\end{matrix}\right))\left(\begin{matrix}-12\\3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-\left(-8\left(-4\right)\right)}&-\frac{-8}{7\times 2-\left(-8\left(-4\right)\right)}\\-\frac{-4}{7\times 2-\left(-8\left(-4\right)\right)}&\frac{7}{7\times 2-\left(-8\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-12\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}&-\frac{4}{9}\\-\frac{2}{9}&-\frac{7}{18}\end{matrix}\right)\left(\begin{matrix}-12\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\left(-12\right)-\frac{4}{9}\times 3\\-\frac{2}{9}\left(-12\right)-\frac{7}{18}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{3}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=\frac{3}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
7x-8y=-12,-4x+2y=3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-4\times 7x-4\left(-8\right)y=-4\left(-12\right),7\left(-4\right)x+7\times 2y=7\times 3
ដើម្បីធ្វើឲ្យ 7x និង -4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 7។
-28x+32y=48,-28x+14y=21
ផ្ទៀងផ្ទាត់។
-28x+28x+32y-14y=48-21
ដក -28x+14y=21 ពី -28x+32y=48 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
32y-14y=48-21
បូក -28x ជាមួយ 28x។ ការលុបតួ -28x និង 28x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
18y=48-21
បូក 32y ជាមួយ -14y។
18y=27
បូក 48 ជាមួយ -21។
y=\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង 18។
-4x+2\times \frac{3}{2}=3
ជំនួស \frac{3}{2} សម្រាប់ y ក្នុង -4x+2y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-4x+3=3
គុណ 2 ដង \frac{3}{2}។
-4x=0
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=0
ចែកជ្រុងទាំងពីនឹង -4។
x=0,y=\frac{3}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។