រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x-y=3,x-y=4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
3x-y=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
3x=y+3
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{3}\left(y+3\right)
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{1}{3}y+1
គុណ \frac{1}{3} ដង y+3។
\frac{1}{3}y+1-y=4
ជំនួស \frac{y}{3}+1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-y=4។
-\frac{2}{3}y+1=4
បូក \frac{y}{3} ជាមួយ -y។
-\frac{2}{3}y=3
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{9}{2}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{2}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{3}\left(-\frac{9}{2}\right)+1
ជំនួស -\frac{9}{2} សម្រាប់ y ក្នុង x=\frac{1}{3}y+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{3}{2}+1
គុណ \frac{1}{3} ដង -\frac{9}{2} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=-\frac{1}{2}
បូក 1 ជាមួយ -\frac{3}{2}។
x=-\frac{1}{2},y=-\frac{9}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
3x-y=3,x-y=4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times 4\\\frac{1}{2}\times 3-\frac{3}{2}\times 4\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\-\frac{9}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{1}{2},y=-\frac{9}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
3x-y=3,x-y=4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x-x-y+y=3-4
ដក x-y=4 ពី 3x-y=3 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
3x-x=3-4
បូក -y ជាមួយ y។ ការលុបតួ -y និង y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
2x=3-4
បូក 3x ជាមួយ -x។
2x=-1
បូក 3 ជាមួយ -4។
x=-\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 2។
-\frac{1}{2}-y=4
ជំនួស -\frac{1}{2} សម្រាប់ x ក្នុង x-y=4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
-y=\frac{9}{2}
បូក \frac{1}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2},y=-\frac{9}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។