រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+2y=10,-2x+4y=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+2y=10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-2y+10
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-2y+10\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-y+5
គុណ \frac{1}{2} ដង -2y+10។
-2\left(-y+5\right)+4y=-4
ជំនួស -y+5 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x+4y=-4។
2y-10+4y=-4
គុណ -2 ដង -y+5។
6y-10=-4
បូក 2y ជាមួយ 4y។
6y=6
បូក 10 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=1
ចែកជ្រុងទាំងពីនឹង 6។
x=-1+5
ជំនួស 1 សម្រាប់ y ក្នុង x=-y+5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=4
បូក 5 ជាមួយ -1។
x=4,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+2y=10,-2x+4y=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&2\\-2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&2\\-2&4\end{matrix}\right))\left(\begin{matrix}2&2\\-2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&4\end{matrix}\right))\left(\begin{matrix}10\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&2\\-2&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&4\end{matrix}\right))\left(\begin{matrix}10\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&4\end{matrix}\right))\left(\begin{matrix}10\\-4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-2\left(-2\right)}&-\frac{2}{2\times 4-2\left(-2\right)}\\-\frac{-2}{2\times 4-2\left(-2\right)}&\frac{2}{2\times 4-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{6}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}10\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 10-\frac{1}{6}\left(-4\right)\\\frac{1}{6}\times 10+\frac{1}{6}\left(-4\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=4,y=1
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+2y=10,-2x+4y=-4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2\times 2x-2\times 2y=-2\times 10,2\left(-2\right)x+2\times 4y=2\left(-4\right)
ដើម្បីធ្វើឲ្យ 2x និង -2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
-4x-4y=-20,-4x+8y=-8
ផ្ទៀងផ្ទាត់។
-4x+4x-4y-8y=-20+8
ដក -4x+8y=-8 ពី -4x-4y=-20 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-4y-8y=-20+8
បូក -4x ជាមួយ 4x។ ការលុបតួ -4x និង 4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-12y=-20+8
បូក -4y ជាមួយ -8y។
-12y=-12
បូក -20 ជាមួយ 8។
y=1
ចែកជ្រុងទាំងពីនឹង -12។
-2x+4=-4
ជំនួស 1 សម្រាប់ y ក្នុង -2x+4y=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-2x=-8
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=4
ចែកជ្រុងទាំងពីនឹង -2។
x=4,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។