រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-5x+y=-11,4x-6y=14
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-5x+y=-11
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-5x=-y-11
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{5}\left(-y-11\right)
ចែកជ្រុងទាំងពីនឹង -5។
x=\frac{1}{5}y+\frac{11}{5}
គុណ -\frac{1}{5} ដង -y-11។
4\left(\frac{1}{5}y+\frac{11}{5}\right)-6y=14
ជំនួស \frac{11+y}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x-6y=14។
\frac{4}{5}y+\frac{44}{5}-6y=14
គុណ 4 ដង \frac{11+y}{5}។
-\frac{26}{5}y+\frac{44}{5}=14
បូក \frac{4y}{5} ជាមួយ -6y។
-\frac{26}{5}y=\frac{26}{5}
ដក \frac{44}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{26}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{5}\left(-1\right)+\frac{11}{5}
ជំនួស -1 សម្រាប់ y ក្នុង x=\frac{1}{5}y+\frac{11}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-1+11}{5}
គុណ \frac{1}{5} ដង -1។
x=2
បូក \frac{11}{5} ជាមួយ -\frac{1}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-5x+y=-11,4x-6y=14
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\14\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-5\left(-6\right)-4}&-\frac{1}{-5\left(-6\right)-4}\\-\frac{4}{-5\left(-6\right)-4}&-\frac{5}{-5\left(-6\right)-4}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}&-\frac{1}{26}\\-\frac{2}{13}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}\left(-11\right)-\frac{1}{26}\times 14\\-\frac{2}{13}\left(-11\right)-\frac{5}{26}\times 14\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
-5x+y=-11,4x-6y=14
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\left(-5\right)x+4y=4\left(-11\right),-5\times 4x-5\left(-6\right)y=-5\times 14
ដើម្បីធ្វើឲ្យ -5x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -5។
-20x+4y=-44,-20x+30y=-70
ផ្ទៀងផ្ទាត់។
-20x+20x+4y-30y=-44+70
ដក -20x+30y=-70 ពី -20x+4y=-44 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y-30y=-44+70
បូក -20x ជាមួយ 20x។ ការលុបតួ -20x និង 20x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-26y=-44+70
បូក 4y ជាមួយ -30y។
-26y=26
បូក -44 ជាមួយ 70។
y=-1
ចែកជ្រុងទាំងពីនឹង -26។
4x-6\left(-1\right)=14
ជំនួស -1 សម្រាប់ y ក្នុង 4x-6y=14។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x+6=14
គុណ -6 ដង -1។
4x=8
ដក 6 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង 4។
x=2,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។