រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5y+x=44,y-x=4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5y+x=44
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5y=-x+44
ដក x ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{5}\left(-x+44\right)
ចែកជ្រុងទាំងពីនឹង 5។
y=-\frac{1}{5}x+\frac{44}{5}
គុណ \frac{1}{5} ដង -x+44។
-\frac{1}{5}x+\frac{44}{5}-x=4
ជំនួស \frac{-x+44}{5} សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-x=4។
-\frac{6}{5}x+\frac{44}{5}=4
បូក -\frac{x}{5} ជាមួយ -x។
-\frac{6}{5}x=-\frac{24}{5}
ដក \frac{44}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=4
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{6}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
y=-\frac{1}{5}\times 4+\frac{44}{5}
ជំនួស 4 សម្រាប់ x ក្នុង y=-\frac{1}{5}x+\frac{44}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=\frac{-4+44}{5}
គុណ -\frac{1}{5} ដង 4។
y=8
បូក \frac{44}{5} ជាមួយ -\frac{4}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
y=8,x=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5y+x=44,y-x=4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}44\\4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&1\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-1}&-\frac{1}{5\left(-1\right)-1}\\-\frac{1}{5\left(-1\right)-1}&\frac{5}{5\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{6}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 44+\frac{1}{6}\times 4\\\frac{1}{6}\times 44-\frac{5}{6}\times 4\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
y=8,x=4
ទាញយកធាតុម៉ាទ្រីស y និង x។
5y+x=44,y-x=4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5y+x=44,5y+5\left(-1\right)x=5\times 4
ដើម្បីធ្វើឲ្យ 5y និង y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
5y+x=44,5y-5x=20
ផ្ទៀងផ្ទាត់។
5y-5y+x+5x=44-20
ដក 5y-5x=20 ពី 5y+x=44 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
x+5x=44-20
បូក 5y ជាមួយ -5y។ ការលុបតួ 5y និង -5y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
6x=44-20
បូក x ជាមួយ 5x។
6x=24
បូក 44 ជាមួយ -20។
x=4
ចែកជ្រុងទាំងពីនឹង 6។
y-4=4
ជំនួស 4 សម្រាប់ x ក្នុង y-x=4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=8
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=8,x=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។