រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-x=-6
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក x ពីជ្រុងទាំងពីរ។
y+6x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 6x ទៅជ្រុងទាំងពីរ។
y-x=-6,y+6x=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-x=-6
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=x-6
បូក x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x-6+6x=1
ជំនួស x-6 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y+6x=1។
7x-6=1
បូក x ជាមួយ 6x។
7x=7
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង 7។
y=1-6
ជំនួស 1 សម្រាប់ x ក្នុង y=x-6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-5
បូក -6 ជាមួយ 1។
y=-5,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-x=-6
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក x ពីជ្រុងទាំងពីរ។
y+6x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 6x ទៅជ្រុងទាំងពីរ។
y-x=-6,y+6x=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\1&6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}1&-1\\1&6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}-6\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\1&6\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}-6\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}-6\\1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6-\left(-1\right)}&-\frac{-1}{6-\left(-1\right)}\\-\frac{1}{6-\left(-1\right)}&\frac{1}{6-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-6\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{7}&\frac{1}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-6\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{7}\left(-6\right)+\frac{1}{7}\\-\frac{1}{7}\left(-6\right)+\frac{1}{7}\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=-5,x=1
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-x=-6
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក x ពីជ្រុងទាំងពីរ។
y+6x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 6x ទៅជ្រុងទាំងពីរ។
y-x=-6,y+6x=1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y-x-6x=-6-1
ដក y+6x=1 ពី y-x=-6 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-x-6x=-6-1
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-7x=-6-1
បូក -x ជាមួយ -6x។
-7x=-7
បូក -6 ជាមួយ -1។
x=1
ចែកជ្រុងទាំងពីនឹង -7។
y+6=1
ជំនួស 1 សម្រាប់ x ក្នុង y+6x=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-5
ដក 6 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-5,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។