រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-x=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក x ពីជ្រុងទាំងពីរ។
y+x=-4
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
y-x=2,y+x=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-x=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=x+2
បូក x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x+2+x=-4
ជំនួស x+2 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y+x=-4។
2x+2=-4
បូក x ជាមួយ x។
2x=-6
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-3
ចែកជ្រុងទាំងពីនឹង 2។
y=-3+2
ជំនួស -3 សម្រាប់ x ក្នុង y=x+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-1
បូក 2 ជាមួយ -3។
y=-1,x=-3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-x=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក x ពីជ្រុងទាំងពីរ។
y+x=-4
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
y-x=2,y+x=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\left(-4\right)\\-\frac{1}{2}\times 2+\frac{1}{2}\left(-4\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
ធ្វើនព្វន្ត។
y=-1,x=-3
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-x=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក x ពីជ្រុងទាំងពីរ។
y+x=-4
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
y-x=2,y+x=-4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y-x-x=2+4
ដក y+x=-4 ពី y-x=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-x-x=2+4
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2x=2+4
បូក -x ជាមួយ -x។
-2x=6
បូក 2 ជាមួយ 4។
x=-3
ចែកជ្រុងទាំងពីនឹង -2។
y-3=-4
ជំនួស -3 សម្រាប់ x ក្នុង y+x=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-1
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-1,x=-3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។