រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-2x=-4
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
x+2y=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 1 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
y-2x=-4,2y+x=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-2x=-4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=2x-4
បូក 2x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2\left(2x-4\right)+x=1
ជំនួស -4+2x សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត 2y+x=1។
4x-8+x=1
គុណ 2 ដង -4+2x។
5x-8=1
បូក 4x ជាមួយ x។
5x=9
បូក 8 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{9}{5}
ចែកជ្រុងទាំងពីនឹង 5។
y=2\times \frac{9}{5}-4
ជំនួស \frac{9}{5} សម្រាប់ x ក្នុង y=2x-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=\frac{18}{5}-4
គុណ 2 ដង \frac{9}{5}។
y=-\frac{2}{5}
បូក -4 ជាមួយ \frac{18}{5}។
y=-\frac{2}{5},x=\frac{9}{5}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-2x=-4
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
x+2y=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 1 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
y-2x=-4,2y+x=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-2\\2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}1&-2\\2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-2\\2&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\times 2\right)}&-\frac{-2}{1-\left(-2\times 2\right)}\\-\frac{2}{1-\left(-2\times 2\right)}&\frac{1}{1-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-4\right)+\frac{2}{5}\\-\frac{2}{5}\left(-4\right)+\frac{1}{5}\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\\frac{9}{5}\end{matrix}\right)
ធ្វើនព្វន្ត។
y=-\frac{2}{5},x=\frac{9}{5}
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-2x=-4
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
x+2y=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 1 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
y-2x=-4,2y+x=1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2y+2\left(-2\right)x=2\left(-4\right),2y+x=1
ដើម្បីធ្វើឲ្យ y និង 2y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
2y-4x=-8,2y+x=1
ផ្ទៀងផ្ទាត់។
2y-2y-4x-x=-8-1
ដក 2y+x=1 ពី 2y-4x=-8 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-4x-x=-8-1
បូក 2y ជាមួយ -2y។ ការលុបតួ 2y និង -2y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-5x=-8-1
បូក -4x ជាមួយ -x។
-5x=-9
បូក -8 ជាមួយ -1។
x=\frac{9}{5}
ចែកជ្រុងទាំងពីនឹង -5។
2y+\frac{9}{5}=1
ជំនួស \frac{9}{5} សម្រាប់ x ក្នុង 2y+x=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
2y=-\frac{4}{5}
ដក \frac{9}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{2}{5}
ចែកជ្រុងទាំងពីនឹង 2។
y=-\frac{2}{5},x=\frac{9}{5}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។