រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-2x=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x=0,200y+300x=7000
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-2x=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=2x
បូក 2x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
200\times 2x+300x=7000
ជំនួស 2x សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត 200y+300x=7000។
400x+300x=7000
គុណ 200 ដង 2x។
700x=7000
បូក 400x ជាមួយ 300x។
x=10
ចែកជ្រុងទាំងពីនឹង 700។
y=2\times 10
ជំនួស 10 សម្រាប់ x ក្នុង y=2x។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=20
គុណ 2 ដង 10។
y=20,x=10
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-2x=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x=0,200y+300x=7000
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\7000\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-2\\200&300\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{300}{300-\left(-2\times 200\right)}&-\frac{-2}{300-\left(-2\times 200\right)}\\-\frac{200}{300-\left(-2\times 200\right)}&\frac{1}{300-\left(-2\times 200\right)}\end{matrix}\right)\left(\begin{matrix}0\\7000\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{1}{350}\\-\frac{2}{7}&\frac{1}{700}\end{matrix}\right)\left(\begin{matrix}0\\7000\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{350}\times 7000\\\frac{1}{700}\times 7000\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}20\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
y=20,x=10
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-2x=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x=0,200y+300x=7000
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
200y+200\left(-2\right)x=0,200y+300x=7000
ដើម្បីធ្វើឲ្យ y និង 200y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 200 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
200y-400x=0,200y+300x=7000
ផ្ទៀងផ្ទាត់។
200y-200y-400x-300x=-7000
ដក 200y+300x=7000 ពី 200y-400x=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-400x-300x=-7000
បូក 200y ជាមួយ -200y។ ការលុបតួ 200y និង -200y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-700x=-7000
បូក -400x ជាមួយ -300x។
x=10
ចែកជ្រុងទាំងពីនឹង -700។
200y+300\times 10=7000
ជំនួស 10 សម្រាប់ x ក្នុង 200y+300x=7000។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
200y+3000=7000
គុណ 300 ដង 10។
200y=4000
ដក 3000 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=20
ចែកជ្រុងទាំងពីនឹង 200។
y=20,x=10
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។