រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-2x=4
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y-2x=4,y-x=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-2x=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=2x+4
បូក 2x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2x+4-x=1
ជំនួស 4+2x សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-x=1។
x+4=1
បូក 2x ជាមួយ -x។
x=-3
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=2\left(-3\right)+4
ជំនួស -3 សម្រាប់ x ក្នុង y=2x+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-6+4
គុណ 2 ដង -3។
y=-2
បូក 4 ជាមួយ -6។
y=-2,x=-3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-2x=4
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y-2x=4,y-x=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-2}{-1-\left(-2\right)}\\-\frac{1}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4+2\\-4+1\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\-3\end{matrix}\right)
ធ្វើនព្វន្ត។
y=-2,x=-3
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-2x=4
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y-2x=4,y-x=1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y-2x+x=4-1
ដក y-x=1 ពី y-2x=4 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2x+x=4-1
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-x=4-1
បូក -2x ជាមួយ x។
-x=3
បូក 4 ជាមួយ -1។
x=-3
ចែកជ្រុងទាំងពីនឹង -1។
y-\left(-3\right)=1
ជំនួស -3 សម្រាប់ x ក្នុង y-x=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y+3=1
គុណ -1 ដង -3។
y=-2
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2,x=-3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។