រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y+x=3
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
y-x=-1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y+x=3,y-x=-1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y+x=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=-x+3
ដក x ពីជ្រុងទាំងពីរនៃសមីការរ។
-x+3-x=-1
ជំនួស -x+3 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-x=-1។
-2x+3=-1
បូក -x ជាមួយ -x។
-2x=-4
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង -2។
y=-2+3
ជំនួស 2 សម្រាប់ x ក្នុង y=-x+3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=1
បូក 3 ជាមួយ -2។
y=1,x=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y+x=3
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
y-x=-1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y+x=3,y-x=-1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
y=1,x=2
ទាញយកធាតុម៉ាទ្រីស y និង x។
y+x=3
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម x ទៅជ្រុងទាំងពីរ។
y-x=-1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក x ពីជ្រុងទាំងពីរ។
y+x=3,y-x=-1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y+x+x=3+1
ដក y-x=-1 ពី y+x=3 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
x+x=3+1
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
2x=3+1
បូក x ជាមួយ x។
2x=4
បូក 3 ជាមួយ 1។
x=2
ចែកជ្រុងទាំងពីនឹង 2។
y-2=-1
ជំនួស 2 សម្រាប់ x ក្នុង y-x=-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=1
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=1,x=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។