រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y+2x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
y-3x=-4
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 3x ពីជ្រុងទាំងពីរ។
y+2x=1,y-3x=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y+2x=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=-2x+1
ដក 2x ពីជ្រុងទាំងពីរនៃសមីការរ។
-2x+1-3x=-4
ជំនួស -2x+1 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-3x=-4។
-5x+1=-4
បូក -2x ជាមួយ -3x។
-5x=-5
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង -5។
y=-2+1
ជំនួស 1 សម្រាប់ x ក្នុង y=-2x+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-1
បូក 1 ជាមួយ -2។
y=-1,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y+2x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
y-3x=-4
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 3x ពីជ្រុងទាំងពីរ។
y+2x=1,y-3x=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&2\\1&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}+\frac{2}{5}\left(-4\right)\\\frac{1}{5}-\frac{1}{5}\left(-4\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=-1,x=1
ទាញយកធាតុម៉ាទ្រីស y និង x។
y+2x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
y-3x=-4
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 3x ពីជ្រុងទាំងពីរ។
y+2x=1,y-3x=-4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y+2x+3x=1+4
ដក y-3x=-4 ពី y+2x=1 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2x+3x=1+4
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
5x=1+4
បូក 2x ជាមួយ 3x។
5x=5
បូក 1 ជាមួយ 4។
x=1
ចែកជ្រុងទាំងពីនឹង 5។
y-3=-4
ជំនួស 1 សម្រាប់ x ក្នុង y-3x=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-1
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-1,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។