រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-\frac{1}{3}x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក \frac{1}{3}x ពីជ្រុងទាំងពីរ។
y-\frac{4}{3}x=-2
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក \frac{4}{3}x ពីជ្រុងទាំងពីរ។
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-\frac{1}{3}x=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=\frac{1}{3}x+1
បូក \frac{x}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
\frac{1}{3}x+1-\frac{4}{3}x=-2
ជំនួស \frac{x}{3}+1 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-\frac{4}{3}x=-2។
-x+1=-2
បូក \frac{x}{3} ជាមួយ -\frac{4x}{3}។
-x=-3
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង -1។
y=\frac{1}{3}\times 3+1
ជំនួស 3 សម្រាប់ x ក្នុង y=\frac{1}{3}x+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=1+1
គុណ \frac{1}{3} ដង 3។
y=2
បូក 1 ជាមួយ 1។
y=2,x=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-\frac{1}{3}x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក \frac{1}{3}x ពីជ្រុងទាំងពីរ។
y-\frac{4}{3}x=-2
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក \frac{4}{3}x ពីជ្រុងទាំងពីរ។
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{4}{3}}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}\\-\frac{1}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}&\frac{1}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}-\frac{1}{3}\left(-2\right)\\1-\left(-2\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
y=2,x=3
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-\frac{1}{3}x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក \frac{1}{3}x ពីជ្រុងទាំងពីរ។
y-\frac{4}{3}x=-2
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក \frac{4}{3}x ពីជ្រុងទាំងពីរ។
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y-\frac{1}{3}x+\frac{4}{3}x=1+2
ដក y-\frac{4}{3}x=-2 ពី y-\frac{1}{3}x=1 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-\frac{1}{3}x+\frac{4}{3}x=1+2
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
x=1+2
បូក -\frac{x}{3} ជាមួយ \frac{4x}{3}។
x=3
បូក 1 ជាមួយ 2។
y-\frac{4}{3}\times 3=-2
ជំនួស 3 សម្រាប់ x ក្នុង y-\frac{4}{3}x=-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y-4=-2
គុណ -\frac{4}{3} ដង 3។
y=2
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=2,x=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។