រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-\frac{1}{2}x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក \frac{1}{2}x ពីជ្រុងទាំងពីរ។
y-\frac{1}{2}x=1,2y+3x=-2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-\frac{1}{2}x=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=\frac{1}{2}x+1
បូក \frac{x}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2\left(\frac{1}{2}x+1\right)+3x=-2
ជំនួស \frac{x}{2}+1 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត 2y+3x=-2។
x+2+3x=-2
គុណ 2 ដង \frac{x}{2}+1។
4x+2=-2
បូក x ជាមួយ 3x។
4x=-4
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង 4។
y=\frac{1}{2}\left(-1\right)+1
ជំនួស -1 សម្រាប់ x ក្នុង y=\frac{1}{2}x+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-\frac{1}{2}+1
គុណ \frac{1}{2} ដង -1។
y=\frac{1}{2}
បូក 1 ជាមួយ -\frac{1}{2}។
y=\frac{1}{2},x=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-\frac{1}{2}x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក \frac{1}{2}x ពីជ្រុងទាំងពីរ។
y-\frac{1}{2}x=1,2y+3x=-2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\2&3\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-\frac{1}{2}\times 2\right)}&-\frac{-\frac{1}{2}}{3-\left(-\frac{1}{2}\times 2\right)}\\-\frac{2}{3-\left(-\frac{1}{2}\times 2\right)}&\frac{1}{3-\left(-\frac{1}{2}\times 2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{8}\\-\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}+\frac{1}{8}\left(-2\right)\\-\frac{1}{2}+\frac{1}{4}\left(-2\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=\frac{1}{2},x=-1
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-\frac{1}{2}x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក \frac{1}{2}x ពីជ្រុងទាំងពីរ។
y-\frac{1}{2}x=1,2y+3x=-2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2y+2\left(-\frac{1}{2}\right)x=2,2y+3x=-2
ដើម្បីធ្វើឲ្យ y និង 2y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
2y-x=2,2y+3x=-2
ផ្ទៀងផ្ទាត់។
2y-2y-x-3x=2+2
ដក 2y+3x=-2 ពី 2y-x=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-x-3x=2+2
បូក 2y ជាមួយ -2y។ ការលុបតួ 2y និង -2y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-4x=2+2
បូក -x ជាមួយ -3x។
-4x=4
បូក 2 ជាមួយ 2។
x=-1
ចែកជ្រុងទាំងពីនឹង -4។
2y+3\left(-1\right)=-2
ជំនួស -1 សម្រាប់ x ក្នុង 2y+3x=-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
2y-3=-2
គុណ 3 ដង -1។
2y=1
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 2។
y=\frac{1}{2},x=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។