រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y+25x=45,y+0.3x=35
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y+25x=45
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=-25x+45
ដក 25x ពីជ្រុងទាំងពីរនៃសមីការរ។
-25x+45+0.3x=35
ជំនួស -25x+45 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y+0.3x=35។
-24.7x+45=35
បូក -25x ជាមួយ \frac{3x}{10}។
-24.7x=-10
ដក 45 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{100}{247}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -24.7 ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
y=-25\times \frac{100}{247}+45
ជំនួស \frac{100}{247} សម្រាប់ x ក្នុង y=-25x+45។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-\frac{2500}{247}+45
គុណ -25 ដង \frac{100}{247}។
y=\frac{8615}{247}
បូក 45 ជាមួយ -\frac{2500}{247}។
y=\frac{8615}{247},x=\frac{100}{247}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y+25x=45,y+0.3x=35
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}45\\35\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&25\\1&0.3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&25\\1&0.3\end{matrix}\right))\left(\begin{matrix}45\\35\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.3}{0.3-25}&-\frac{25}{0.3-25}\\-\frac{1}{0.3-25}&\frac{1}{0.3-25}\end{matrix}\right)\left(\begin{matrix}45\\35\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{247}&\frac{250}{247}\\\frac{10}{247}&-\frac{10}{247}\end{matrix}\right)\left(\begin{matrix}45\\35\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{247}\times 45+\frac{250}{247}\times 35\\\frac{10}{247}\times 45-\frac{10}{247}\times 35\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8615}{247}\\\frac{100}{247}\end{matrix}\right)
ធ្វើនព្វន្ត។
y=\frac{8615}{247},x=\frac{100}{247}
ទាញយកធាតុម៉ាទ្រីស y និង x។
y+25x=45,y+0.3x=35
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y+25x-0.3x=45-35
ដក y+0.3x=35 ពី y+25x=45 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
25x-0.3x=45-35
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
24.7x=45-35
បូក 25x ជាមួយ -\frac{3x}{10}។
24.7x=10
បូក 45 ជាមួយ -35។
x=\frac{100}{247}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ 24.7 ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
y+0.3\times \frac{100}{247}=35
ជំនួស \frac{100}{247} សម្រាប់ x ក្នុង y+0.3x=35។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y+\frac{30}{247}=35
គុណ 0.3 ដង \frac{100}{247} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
y=\frac{8615}{247}
ដក \frac{30}{247} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{8615}{247},x=\frac{100}{247}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។