រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-8-2y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
x-2y=8
បន្ថែម 8 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
x-2y=8,x+y=-2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-2y=8
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=2y+8
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2y+8+y=-2
ជំនួស 8+2y សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+y=-2។
3y+8=-2
បូក 2y ជាមួយ y។
3y=-10
ដក 8 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{10}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x=2\left(-\frac{10}{3}\right)+8
ជំនួស -\frac{10}{3} សម្រាប់ y ក្នុង x=2y+8។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{20}{3}+8
គុណ 2 ដង -\frac{10}{3}។
x=\frac{4}{3}
បូក 8 ជាមួយ -\frac{20}{3}។
x=\frac{4}{3},y=-\frac{10}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-8-2y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
x-2y=8
បន្ថែម 8 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
x-2y=8,x+y=-2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}8\\-2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-2\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}8\\-2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}8\\-2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}8\\-2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}8\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 8+\frac{2}{3}\left(-2\right)\\-\frac{1}{3}\times 8+\frac{1}{3}\left(-2\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\-\frac{10}{3}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{4}{3},y=-\frac{10}{3}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-8-2y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
x-2y=8
បន្ថែម 8 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
x-2y=8,x+y=-2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x-2y-y=8+2
ដក x+y=-2 ពី x-2y=8 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2y-y=8+2
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-3y=8+2
បូក -2y ជាមួយ -y។
-3y=10
បូក 8 ជាមួយ 2។
y=-\frac{10}{3}
ចែកជ្រុងទាំងពីនឹង -3។
x-\frac{10}{3}=-2
ជំនួស -\frac{10}{3} សម្រាប់ y ក្នុង x+y=-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{4}{3}
បូក \frac{10}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{4}{3},y=-\frac{10}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។