រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-4y=4,7x-7y=-14
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-4y=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=4y+4
បូក 4y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
7\left(4y+4\right)-7y=-14
ជំនួស 4+4y សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 7x-7y=-14។
28y+28-7y=-14
គុណ 7 ដង 4+4y។
21y+28=-14
បូក 28y ជាមួយ -7y។
21y=-42
ដក 28 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែកជ្រុងទាំងពីនឹង 21។
x=4\left(-2\right)+4
ជំនួស -2 សម្រាប់ y ក្នុង x=4y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-8+4
គុណ 4 ដង -2។
x=-4
បូក 4 ជាមួយ -8។
x=-4,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-4y=4,7x-7y=-14
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-14\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\times 7\right)}&-\frac{-4}{-7-\left(-4\times 7\right)}\\-\frac{7}{-7-\left(-4\times 7\right)}&\frac{1}{-7-\left(-4\times 7\right)}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{21}\\-\frac{1}{3}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{4}{21}\left(-14\right)\\-\frac{1}{3}\times 4+\frac{1}{21}\left(-14\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-4,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-4y=4,7x-7y=-14
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
7x+7\left(-4\right)y=7\times 4,7x-7y=-14
ដើម្បីធ្វើឲ្យ x និង 7x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 7 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
7x-28y=28,7x-7y=-14
ផ្ទៀងផ្ទាត់។
7x-7x-28y+7y=28+14
ដក 7x-7y=-14 ពី 7x-28y=28 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-28y+7y=28+14
បូក 7x ជាមួយ -7x។ ការលុបតួ 7x និង -7x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-21y=28+14
បូក -28y ជាមួយ 7y។
-21y=42
បូក 28 ជាមួយ 14។
y=-2
ចែកជ្រុងទាំងពីនឹង -21។
7x-7\left(-2\right)=-14
ជំនួស -2 សម្រាប់ y ក្នុង 7x-7y=-14។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
7x+14=-14
គុណ -7 ដង -2។
7x=-28
ដក 14 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-4
ចែកជ្រុងទាំងពីនឹង 7។
x=-4,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។