ដោះស្រាយសម្រាប់ x, y
x=-5
y=-8
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x-4y=27,3x+y=-23
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-4y=27
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=4y+27
បូក 4y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3\left(4y+27\right)+y=-23
ជំនួស 4y+27 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+y=-23។
12y+81+y=-23
គុណ 3 ដង 4y+27។
13y+81=-23
បូក 12y ជាមួយ y។
13y=-104
ដក 81 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-8
ចែកជ្រុងទាំងពីនឹង 13។
x=4\left(-8\right)+27
ជំនួស -8 សម្រាប់ y ក្នុង x=4y+27។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-32+27
គុណ 4 ដង -8។
x=-5
បូក 27 ជាមួយ -32។
x=-5,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-4y=27,3x+y=-23
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-23\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-4\\3&1\end{matrix}\right))\left(\begin{matrix}1&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\3&1\end{matrix}\right))\left(\begin{matrix}27\\-23\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-4\\3&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\3&1\end{matrix}\right))\left(\begin{matrix}27\\-23\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\3&1\end{matrix}\right))\left(\begin{matrix}27\\-23\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\times 3\right)}&-\frac{-4}{1-\left(-4\times 3\right)}\\-\frac{3}{1-\left(-4\times 3\right)}&\frac{1}{1-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}27\\-23\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{4}{13}\\-\frac{3}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}27\\-23\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\times 27+\frac{4}{13}\left(-23\right)\\-\frac{3}{13}\times 27+\frac{1}{13}\left(-23\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-8\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-5,y=-8
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-4y=27,3x+y=-23
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+3\left(-4\right)y=3\times 27,3x+y=-23
ដើម្បីធ្វើឲ្យ x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
3x-12y=81,3x+y=-23
ផ្ទៀងផ្ទាត់។
3x-3x-12y-y=81+23
ដក 3x+y=-23 ពី 3x-12y=81 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-12y-y=81+23
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-13y=81+23
បូក -12y ជាមួយ -y។
-13y=104
បូក 81 ជាមួយ 23។
y=-8
ចែកជ្រុងទាំងពីនឹង -13។
3x-8=-23
ជំនួស -8 សម្រាប់ y ក្នុង 3x+y=-23។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x=-15
បូក 8 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-5
ចែកជ្រុងទាំងពីនឹង 3។
x=-5,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}