រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-2y=-11,3x+7y=32
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-2y=-11
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=2y-11
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3\left(2y-11\right)+7y=32
ជំនួស 2y-11 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+7y=32។
6y-33+7y=32
គុណ 3 ដង 2y-11។
13y-33=32
បូក 6y ជាមួយ 7y។
13y=65
បូក 33 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែកជ្រុងទាំងពីនឹង 13។
x=2\times 5-11
ជំនួស 5 សម្រាប់ y ក្នុង x=2y-11។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=10-11
គុណ 2 ដង 5។
x=-1
បូក -11 ជាមួយ 10។
x=-1,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-2y=-11,3x+7y=32
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-2\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\32\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-2\\3&7\end{matrix}\right))\left(\begin{matrix}1&-2\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&7\end{matrix}\right))\left(\begin{matrix}-11\\32\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-2\\3&7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&7\end{matrix}\right))\left(\begin{matrix}-11\\32\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&7\end{matrix}\right))\left(\begin{matrix}-11\\32\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-2\times 3\right)}&-\frac{-2}{7-\left(-2\times 3\right)}\\-\frac{3}{7-\left(-2\times 3\right)}&\frac{1}{7-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-11\\32\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}&\frac{2}{13}\\-\frac{3}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}-11\\32\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\left(-11\right)+\frac{2}{13}\times 32\\-\frac{3}{13}\left(-11\right)+\frac{1}{13}\times 32\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-2y=-11,3x+7y=32
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+3\left(-2\right)y=3\left(-11\right),3x+7y=32
ដើម្បីធ្វើឲ្យ x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
3x-6y=-33,3x+7y=32
ផ្ទៀងផ្ទាត់។
3x-3x-6y-7y=-33-32
ដក 3x+7y=32 ពី 3x-6y=-33 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-6y-7y=-33-32
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-13y=-33-32
បូក -6y ជាមួយ -7y។
-13y=-65
បូក -33 ជាមួយ -32។
y=5
ចែកជ្រុងទាំងពីនឹង -13។
3x+7\times 5=32
ជំនួស 5 សម្រាប់ y ក្នុង 3x+7y=32។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x+35=32
គុណ 7 ដង 5។
3x=-3
ដក 35 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង 3។
x=-1,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។