រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-7y=135
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 7y ពីជ្រុងទាំងពីរ។
y-4x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 4x ពីជ្រុងទាំងពីរ។
x-7y=135,-4x+y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-7y=135
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=7y+135
បូក 7y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
-4\left(7y+135\right)+y=0
ជំនួស 7y+135 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -4x+y=0។
-28y-540+y=0
គុណ -4 ដង 7y+135។
-27y-540=0
បូក -28y ជាមួយ y។
-27y=540
បូក 540 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-20
ចែកជ្រុងទាំងពីនឹង -27។
x=7\left(-20\right)+135
ជំនួស -20 សម្រាប់ y ក្នុង x=7y+135។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-140+135
គុណ 7 ដង -20។
x=-5
បូក 135 ជាមួយ -140។
x=-5,y=-20
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-7y=135
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 7y ពីជ្រុងទាំងពីរ។
y-4x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 4x ពីជ្រុងទាំងពីរ។
x-7y=135,-4x+y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}135\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}135\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-7\\-4&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}135\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\-4&1\end{matrix}\right))\left(\begin{matrix}135\\0\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-7\left(-4\right)\right)}&-\frac{-7}{1-\left(-7\left(-4\right)\right)}\\-\frac{-4}{1-\left(-7\left(-4\right)\right)}&\frac{1}{1-\left(-7\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}135\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{27}&-\frac{7}{27}\\-\frac{4}{27}&-\frac{1}{27}\end{matrix}\right)\left(\begin{matrix}135\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{27}\times 135\\-\frac{4}{27}\times 135\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-20\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-5,y=-20
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-7y=135
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 7y ពីជ្រុងទាំងពីរ។
y-4x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 4x ពីជ្រុងទាំងពីរ។
x-7y=135,-4x+y=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-4x-4\left(-7\right)y=-4\times 135,-4x+y=0
ដើម្បីធ្វើឲ្យ x និង -4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
-4x+28y=-540,-4x+y=0
ផ្ទៀងផ្ទាត់។
-4x+4x+28y-y=-540
ដក -4x+y=0 ពី -4x+28y=-540 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
28y-y=-540
បូក -4x ជាមួយ 4x។ ការលុបតួ -4x និង 4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
27y=-540
បូក 28y ជាមួយ -y។
y=-20
ចែកជ្រុងទាំងពីនឹង 27។
-4x-20=0
ជំនួស -20 សម្រាប់ y ក្នុង -4x+y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-4x=20
បូក 20 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-5
ចែកជ្រុងទាំងពីនឹង -4។
x=-5,y=-20
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។