រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-9y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 9y ពីជ្រុងទាំងពីរ។
x+y=50,x-9y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=50
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+50
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
-y+50-9y=0
ជំនួស -y+50 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-9y=0។
-10y+50=0
បូក -y ជាមួយ -9y។
-10y=-50
ដក 50 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែកជ្រុងទាំងពីនឹង -10។
x=-5+50
ជំនួស 5 សម្រាប់ y ក្នុង x=-y+50។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=45
បូក 50 ជាមួយ -5។
x=45,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-9y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 9y ពីជ្រុងទាំងពីរ។
x+y=50,x-9y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\1&-9\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-9-1}&-\frac{1}{-9-1}\\-\frac{1}{-9-1}&\frac{1}{-9-1}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}\times 50\\\frac{1}{10}\times 50\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=45,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-9y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 9y ពីជ្រុងទាំងពីរ។
x+y=50,x-9y=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x+y+9y=50
ដក x-9y=0 ពី x+y=50 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y+9y=50
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
10y=50
បូក y ជាមួយ 9y។
y=5
ចែកជ្រុងទាំងពីនឹង 10។
x-9\times 5=0
ជំនួស 5 សម្រាប់ y ក្នុង x-9y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-45=0
គុណ -9 ដង 5។
x=45
បូក 45 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=45,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។