រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+y=200,x+\frac{1}{2}y=160
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=200
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+200
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
-y+200+\frac{1}{2}y=160
ជំនួស -y+200 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+\frac{1}{2}y=160។
-\frac{1}{2}y+200=160
បូក -y ជាមួយ \frac{y}{2}។
-\frac{1}{2}y=-40
ដក 200 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=80
គុណជ្រុងទាំងពីរនឹង -2។
x=-80+200
ជំនួស 80 សម្រាប់ y ក្នុង x=-y+200។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=120
បូក 200 ជាមួយ -80។
x=120,y=80
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=200,x+\frac{1}{2}y=160
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\160\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}200\\160\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-1}&-\frac{1}{\frac{1}{2}-1}\\-\frac{1}{\frac{1}{2}-1}&\frac{1}{\frac{1}{2}-1}\end{matrix}\right)\left(\begin{matrix}200\\160\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\2&-2\end{matrix}\right)\left(\begin{matrix}200\\160\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-200+2\times 160\\2\times 200-2\times 160\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\80\end{matrix}\right)
ធ្វើនព្វន្ត។
x=120,y=80
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=200,x+\frac{1}{2}y=160
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x+y-\frac{1}{2}y=200-160
ដក x+\frac{1}{2}y=160 ពី x+y=200 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y-\frac{1}{2}y=200-160
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
\frac{1}{2}y=200-160
បូក y ជាមួយ -\frac{y}{2}។
\frac{1}{2}y=40
បូក 200 ជាមួយ -160។
y=80
គុណជ្រុងទាំងពីរនឹង 2។
x+\frac{1}{2}\times 80=160
ជំនួស 80 សម្រាប់ y ក្នុង x+\frac{1}{2}y=160។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+40=160
គុណ \frac{1}{2} ដង 80។
x=120
ដក 40 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=120,y=80
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។