ដោះស្រាយសម្រាប់ x, y
x=\frac{1}{4}=0.25
y = \frac{7}{4} = 1\frac{3}{4} = 1.75
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
1+1=8x
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ x។
2=8x
បូក 1 និង 1 ដើម្បីបាន 2។
8x=2
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x=\frac{2}{8}
ចែកជ្រុងទាំងពីនឹង 8។
x=\frac{1}{4}
កាត់បន្ថយប្រភាគ \frac{2}{8} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
\frac{1}{4}+y=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
y=2-\frac{1}{4}
ដក \frac{1}{4} ពីជ្រុងទាំងពីរ។
y=\frac{7}{4}
ដក \frac{1}{4} ពី 2 ដើម្បីបាន \frac{7}{4}។
x=\frac{1}{4} y=\frac{7}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}