រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

9x-7y=-19,3x+y=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
9x-7y=-19
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
9x=7y-19
បូក 7y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{9}\left(7y-19\right)
ចែកជ្រុងទាំងពីនឹង 9។
x=\frac{7}{9}y-\frac{19}{9}
គុណ \frac{1}{9} ដង 7y-19។
3\left(\frac{7}{9}y-\frac{19}{9}\right)+y=7
ជំនួស \frac{7y-19}{9} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+y=7។
\frac{7}{3}y-\frac{19}{3}+y=7
គុណ 3 ដង \frac{7y-19}{9}។
\frac{10}{3}y-\frac{19}{3}=7
បូក \frac{7y}{3} ជាមួយ y។
\frac{10}{3}y=\frac{40}{3}
បូក \frac{19}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=4
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{10}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{7}{9}\times 4-\frac{19}{9}
ជំនួស 4 សម្រាប់ y ក្នុង x=\frac{7}{9}y-\frac{19}{9}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{28-19}{9}
គុណ \frac{7}{9} ដង 4។
x=1
បូក -\frac{19}{9} ជាមួយ \frac{28}{9} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=1,y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
9x-7y=-19,3x+y=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}9&-7\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}9&-7\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}9&-7\\3&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-\left(-7\times 3\right)}&-\frac{-7}{9-\left(-7\times 3\right)}\\-\frac{3}{9-\left(-7\times 3\right)}&\frac{9}{9-\left(-7\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-19\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}&\frac{7}{30}\\-\frac{1}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-19\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}\left(-19\right)+\frac{7}{30}\times 7\\-\frac{1}{10}\left(-19\right)+\frac{3}{10}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=4
ទាញយកធាតុម៉ាទ្រីស x និង y។
9x-7y=-19,3x+y=7
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 9x+3\left(-7\right)y=3\left(-19\right),9\times 3x+9y=9\times 7
ដើម្បីធ្វើឲ្យ 9x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 9។
27x-21y=-57,27x+9y=63
ផ្ទៀងផ្ទាត់។
27x-27x-21y-9y=-57-63
ដក 27x+9y=63 ពី 27x-21y=-57 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-21y-9y=-57-63
បូក 27x ជាមួយ -27x។ ការលុបតួ 27x និង -27x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-30y=-57-63
បូក -21y ជាមួយ -9y។
-30y=-120
បូក -57 ជាមួយ -63។
y=4
ចែកជ្រុងទាំងពីនឹង -30។
3x+4=7
ជំនួស 4 សម្រាប់ y ក្នុង 3x+y=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x=3
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង 3។
x=1,y=4
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។