រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+20y=800
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x+15y=700
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x+20y=800,x+15y=700
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+20y=800
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-20y+800
ដក 20y ពីជ្រុងទាំងពីរនៃសមីការរ។
-20y+800+15y=700
ជំនួស -20y+800 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+15y=700។
-5y+800=700
បូក -20y ជាមួយ 15y។
-5y=-100
ដក 800 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=20
ចែកជ្រុងទាំងពីនឹង -5។
x=-20\times 20+800
ជំនួស 20 សម្រាប់ y ក្នុង x=-20y+800។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-400+800
គុណ -20 ដង 20។
x=400
បូក 800 ជាមួយ -400។
x=400,y=20
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+20y=800
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x+15y=700
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x+20y=800,x+15y=700
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\700\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&20\\1&15\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800+4\times 700\\\frac{1}{5}\times 800-\frac{1}{5}\times 700\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\20\end{matrix}\right)
ធ្វើនព្វន្ត។
x=400,y=20
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+20y=800
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x+15y=700
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x+20y=800,x+15y=700
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x+20y-15y=800-700
ដក x+15y=700 ពី x+20y=800 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
20y-15y=800-700
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
5y=800-700
បូក 20y ជាមួយ -15y។
5y=100
បូក 800 ជាមួយ -700។
y=20
ចែកជ្រុងទាំងពីនឹង 5។
x+15\times 20=700
ជំនួស 20 សម្រាប់ y ក្នុង x+15y=700។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+300=700
គុណ 15 ដង 20។
x=400
ដក 300 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=400,y=20
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។