រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

8+4x-2y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
4x-2y=-8
ដក 8 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
-4x+3y=14
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3y ទៅជ្រុងទាំងពីរ។
4x-2y=-8,-4x+3y=14
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-2y=-8
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=2y-8
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(2y-8\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{1}{2}y-2
គុណ \frac{1}{4} ដង -8+2y។
-4\left(\frac{1}{2}y-2\right)+3y=14
ជំនួស \frac{y}{2}-2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -4x+3y=14។
-2y+8+3y=14
គុណ -4 ដង \frac{y}{2}-2។
y+8=14
បូក -2y ជាមួយ 3y។
y=6
ដក 8 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\times 6-2
ជំនួស 6 សម្រាប់ y ក្នុង x=\frac{1}{2}y-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=3-2
គុណ \frac{1}{2} ដង 6។
x=1
បូក -2 ជាមួយ 3។
x=1,y=6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
8+4x-2y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
4x-2y=-8
ដក 8 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
-4x+3y=14
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3y ទៅជ្រុងទាំងពីរ។
4x-2y=-8,-4x+3y=14
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\14\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-8\right)+\frac{1}{2}\times 14\\-8+14\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=6
ទាញយកធាតុម៉ាទ្រីស x និង y។
8+4x-2y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2y ពីជ្រុងទាំងពីរ។
4x-2y=-8
ដក 8 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
-4x+3y=14
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3y ទៅជ្រុងទាំងពីរ។
4x-2y=-8,-4x+3y=14
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-4\times 4x-4\left(-2\right)y=-4\left(-8\right),4\left(-4\right)x+4\times 3y=4\times 14
ដើម្បីធ្វើឲ្យ 4x និង -4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
-16x+8y=32,-16x+12y=56
ផ្ទៀងផ្ទាត់។
-16x+16x+8y-12y=32-56
ដក -16x+12y=56 ពី -16x+8y=32 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
8y-12y=32-56
បូក -16x ជាមួយ 16x។ ការលុបតួ -16x និង 16x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-4y=32-56
បូក 8y ជាមួយ -12y។
-4y=-24
បូក 32 ជាមួយ -56។
y=6
ចែកជ្រុងទាំងពីនឹង -4។
-4x+3\times 6=14
ជំនួស 6 សម្រាប់ y ក្នុង -4x+3y=14។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-4x+18=14
គុណ 3 ដង 6។
-4x=-4
ដក 18 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង -4។
x=1,y=6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។